Я, помню, был поражён, когда несколько лет назад, читая курс физики для нефизиков в Йельском университете — храме литературной грамотности, — обнаружил, что 35% студентов, в числе которых были выпускники исторических и социологических факультетов, не могли назвать даже порядок величины населения Соединённых Штатов! Многие думали, что в США проживает от одного до десяти миллионов человек — меньше, чем в одном только Нью-Йорке.
На мой взгляд, это признак глубоких проблем в нашей национальной системе образования. И дело даже не в том, что, живя рядом с Нью-Йорком, люди не отдают себе отчёта в том, что население всей Америки не может быть меньше населения одного Нью-Йорка. И даже не в непонимании того, что страна с населением 1 миллион человек будет радикально отличаться от страны с населением 100 миллионов. Главная проблема в том, что для большинства из этих студентов такие числа, как 1 миллион или 100 миллионов не имели никакого объективного смысла. Они никогда не пытались сопоставить, например, миллион чашек кофе с количеством людей, которые их выпивают утром в миллионном городе. Многие не могли назвать мне даже приблизительно расстояние от восточного до западного побережья Соединённых Штатов — они не умели заставить свой мозг сделать простейшую прикидку: умножить расстояние, которое они проезжают за день на автомобиле (около 800 километров) на число дней (5–6 дней), которое необходимо, чтобы пересечь Американский континент, и понять, что это расстояние ближе к 4000–5000 километрам, нежели к 10 000 или к 20 000.
Размышления о числах в терминах того, что эти числа представляют, — самое захватывающее из всех занятий. Именно на этом специализируются физики. Я не возьмусь утверждать, что математические размышления доставляют чувство какого-нибудь особенного комфорта или являются магическим лекарством от математического бессилия, но играть с числами, выясняя, откуда то или иное число появилось в нашем мире и что за ним стоит, достаточно интересно, очень полезно и совсем не сложно. По крайней мере, необходимо научиться оценивать порядок физических величин, а это уже позволит делать важные выводы, не проводя точного количественного анализа. В этой главе я нарушу максиму Стивена Хокинга, очень надеясь, что не разорю своего издателя, и покажу, как физики манипулируют числами, чтобы сделать задачу более понятной, почему они делают это именно так, а не иначе, и что они ожидают получить от этого занятия. Основную идею можно сформулировать так: «мы используем числа, чтобы сделать вещи не сложнее, чем они должны быть».
Прежде всего следует отметить, что физические явления охватывают чрезвычайно широкий спектр возможных числовых значений и очень большие или очень маленькие числа могут появляться при решении даже простейших задач. Самое трудное при работе с такими числами — это подтвердит любой, кто хотя бы раз пытался перемножить столбиком два восьмизначных числа, — не запутаться в количестве цифр. К сожалению, часто самые трудные вещи являются одновременно и самыми важными, поскольку количество цифр определяет порядок числа. Допустим, мы умножаем 40 на 40. Какой ответ будет ближе к правильному: 160 или 2000? Ни одно из этих чисел не является точным значением произведения, но второе гораздо ближе к правильному ответу 1600. Если бы работодатель, пообещав платить вам по 40 долларов в час, заплатил за 40 часов работы только 160 долларов, тот факт, что он потерял всего лишь один нолик, был бы для вас слабым утешением, не правда ли?
Чтобы избежать подобных ошибок, физики придумали разделять числа на две части, одна из которых сообщает вам порядок числа, а вторая — точное значение в пределах этого порядка. Такая запись числа называется экспоненциальной. Она позволяет избежать записи огромного количества нулей, когда необходимо выразить в привычных нам единицах такие значения, как, например, размер наблюдаемой части Вселенной, составляющий около 1 000 000 000 000 000 000 000 000 000 сантиметров.
Глядя на это число, любой скажет, что оно очень велико, но насколько велико?
В экспоненциальной нотации используются степени числа 10. Запись 10n означает число, начинающееся с единицы, за которой следуют n нулей. Например, число 100 в экспоненциальной нотации записывается как 102, а запись 106 представляет число, начинающееся с единицы, за которой следуют шесть нулей, то есть один миллион. Оценивая величину таких чисел, достаточно помнить, что, скажем, число 106 содержит в своей записи на один ноль больше, чем число 105, и, следовательно, оно больше него в 10 раз. Для очень маленьких чисел, таких как размер атома, выраженный в сантиметрах — около 0,000000001 см, — учёные используют отрицательные показатели степени. Запись 10—n означает единицу, делённую на 10n, то есть число типа 0,000… 0001, где единица стоит на n-й позиции после запятой. Таким образом, одна десятая будет записана как 10-1, а одна миллиардная — как 10-9.