Выбрать главу

Наконец появилась надежда, что кто-нибудь сумеет выполнить расчёты, на основании которых можно будет сравнить предсказания теории с экспериментом. Поскольку на близких расстояниях силы взаимодействия между кварками малы, то можно начать расчёт с невзаимодействующих кварков, а потом добавлять методом последовательных приближений всё более и более сильные взаимодействия и в конце получить относительно точное описание их взаимодействия.

В то время как теоретики начали исследовать особенность поведения кварков, получившую название асимптотической свободы, экспериментаторы из Нью-Йорка и Калифорнии разгоняли частицы в ускорителях до всё более и более высоких энергий.

И вот в ноябре 1974 года, с разницей в несколько недель, две разные группы экспериментаторов обнаружили новую частицу с массой примерно в три раза больше массы протона. Но привлекла к себе внимание частица не своей массой, а необычно большим временем жизни, которое в 100 раз превышало время жизни других частиц с похожими массами. Один из физиков сравнил этот факт с обнаружением затерянного в джунглях племени людей, продолжительность жизни в котором составляет 10 000 лет.

Пытаясь объяснить этот феномен, Политцер и его коллега Том Эпплкуист пришли к выводу, что обнаруженная тяжёлая частица состоит из нового типа кварков, предсказанных теоретически несколькими годами ранее и названных очарованными кварками. Большое время жизни связанного состояния этих кварков напрямую следовало из асимптотической свободы кварков в КХД. Если очарованный кварк и очарованный антикварк тяжелее кварков, из которых состоят протоны и нейтроны, то в связанном состоянии они находятся гораздо ближе друг к другу, а значит, силы взаимодействия между ними гораздо слабее.

Это приводит к тому, что им требуется большее время, чтобы «найти» друг друга и проаннигилировать. Грубая оценка времени жизни такого связанного состояния была получена путём масштабирования силы взаимодействия кварков от размера протона до предполагаемого размера новой частицы. Оценка по порядку величины совпала с экспериментальными данными. Так КХД получила своё первое экспериментальное подтверждение.

В последующие годы эксперименты, проведённые при ещё более высоких энергиях сталкивающихся частиц, показали, что используемое в расчётах приближение является достаточно надёжным, и многократно подтвердили существование предсказанной квантовой хромодинамикой асимптотической свободы. Несмотря на то что до сих пор никому так и не удалось выполнить полный и точный расчёт поведения кварков на таких расстояниях, когда их взаимодействие становится очень сильным, количество полученных экспериментальных доказательств уже настолько велико, что сегодня никто не сомневается в справедливости КХД. В 2004 году Гросс, Вильчек и Политцер были удостоены Нобелевской премии за предсказание асимптотической свободы, открывшей дорогу к экспериментальной проверке квантовой хромодинамики. Без ключевых соображений, основанных на анализе размерностей физических величин, это открытие, вполне возможно, могло и не состояться или, по крайней мере, задержаться на долгие годы. Анализ размерностей применим не только в физике элементарных частиц, он является универсальным методом, который даёт нам точку опоры, позволяющую протестировать наше представление о реальности.

Хотя физическое мировоззрение и начинается с чисел, используемых для описания природы, оно не останавливается на них. Помимо чисел физикам нужен язык, при помощи которого они могли бы оперировать числами, как словами, и этим языком является математика. Сразу предвижу чисто практический вопрос: почему бы не пользоваться более естественным языком? Но у нас нет выбора. Ещё Галилей 400 лет назад писал: «Философия написана в величественной книге (я имею в виду Вселенную), которая постоянно открыта нашему взору, но понять её может лишь тот, кто сначала научится постигать её язык и толковать знаки, которыми она написана. Написана же она на языке математики, и знаки её — треугольники, круги и другие геометрические фигуры, без которых человек не смог бы понять в ней ни единого слова; без них он был бы обречён блуждать в потёмках по лабиринту»[7].

Сегодня утверждение, что математика является языком физики, воспринимается как банальность, наподобие той, что французский язык является языком любви. Но это утверждение никак не объясняет, почему мы не можем перевести на другой язык математические выражения так же легко, как стихи Бодлера. В вопросах любви даже те из нас, чей родной язык не является французским, разбираются достаточно хорошо и без перевода, чего нельзя сказать о математических вычислениях.

вернуться

7

«Il Saggiatore, nel quale con bilancia squisita e giusta si ponderano le cose contenute nella Libra è un trattato scritto da Galileo Galilei», — Roma, 1623. Цитируется по переводу Ю. А. Данилова: Галилео Галилей, Пробирных дел мастер. — М.: Наука, 1987.