Выбрать главу

Дело в том, что математика — это больше, чем просто язык. Чтобы показать, насколько больше, я одолжу один аргумент у Ричарда Фейнмана. Помимо того, что Фейнман был харизматиком, он являлся ещё и одним из величайших умов среди физиков-теоретиков двадцатого столетия. Фейнман обладал редким даром просто и понятно объяснять сложные вещи, чем, мне кажется, отчасти объясняется тот факт, что у него всегда был собственный способ понимания и собственный способ вывода почти всех результатов классической физики.

Объясняя роль математики в физике[8], он, в свою очередь, приводил в пример Исаака Ньютона. Величайшим открытием Ньютона был, безусловно, закон всемирного тяготения. Показав, что та же сила, которая удерживает нас на поверхности Земли, отвечает за движения всех небесных объектов, Ньютон сделал физику универсальной наукой. Он показал, что у нас есть возможность описать не только управляющие нами законы и наше место во Вселенной, но и саму Вселенную. Мы сегодня склонны принимать это как должное, но один из самых замечательных законов во Вселенной говорит нам, что та же самая сила, которая управляет полётом бейсбольного мяча, управляет движением Земли вокруг Солнца, движением Солнца вокруг центра Галактики, движением Галактики относительно других галактик и эволюцией самой Вселенной, хотя относительно справедливости последнего утверждения — насчёт Вселенной — вопрос пока остаётся открытым.

Ньютоновский закон всемирного тяготения может быть сформулирован в словесной форме: сила гравитационного притяжения между двумя объектами направлена вдоль линии, соединяющей эти объекты, пропорциональна произведению масс объектов и обратно пропорциональна квадрату расстояния между ними. Словесное определение выглядит громоздким, но это не важно. В сочетании со вторым законом Ньютона, утверждающим, что тело реагирует на действующую на него силу путём изменения скорости в направлении действия силы, и это изменение пропорционально величине силы и обратно пропорционально массе тела, закон всемирного тяготения позволяет описать всё. Любое движение любого количества тяготеющих тел может быть выведено из этих двух законов. Но как? Я мог бы дать эту формулировку лучшему в мире лингвисту и попросить его вывести из неё возраст Вселенной, используя семантические правила, но подозреваю, Вселенная прекратит своё существование раньше, чем ему удастся получить ответ.

Суть в том, что математика представляет собой набор утверждений и выводов, подчинённых правилам логики. Например, Иоганн Кеплер в начале XVII века, проанализировав множество наблюдательных данных, пришёл к выводу, что планеты движутся вокруг Солнца особым образом. Если соединить планету с Солнцем отрезком прямой, то этот отрезок будет за одинаковые промежутки времени «заметать» одинаковые площади. Математически можно показать, что из этого утверждения следует, что, когда планета находится ближе к Солнцу, она движется по своей орбите быстрее, чем когда она находится дальше. Ньютон, в свою очередь, показал, что открытый Кеплером закон может быть строго математически получен из приведённых выше формулировок закона всемирного тяготения и второго закона Ньютона.

Попробуйте, если сумеете, вывести второй закон Кеплера из законов Ньютона, используя только правила английского (или русского) языка… Но при помощи математики, в данном случае на основе простых геометрических соображений, вы сделаете это за несколько минут. За подробностями обратитесь к «Математическим началам натуральной философии» Ньютона, а ещё лучше — прочитайте замечательную книгу Фейнмана «Характер физических законов».

Ключевой момент этой истории состоит в том, что Ньютон, возможно, никогда не сумел бы вывести закон всемирного тяготения, если бы не соединил при помощи математики открытый Кеплером закон движения планет с предположением, что между планетами и Солнцем действует сила притяжения. Этот момент является решающим для развития науки. Не имея математической основы под натуральной философией, к которой во времена Ньютона относили физику, невозможно построить логичную и согласованную теорию. Синтез математических выводов с наблюдаемой физической реальностью имеет основополагающее значение для построения научной картины реальности.

вернуться

8

Фейнман Р. Характер физических законов. — М.: Наука, 1987.