Выбрать главу

Таким образом, разогретая дорога представляется вам как бы зеркалом, отражающим голубое небо. Если вы внимательно присмотритесь к миражу, то увидите, что это «зеркало» на самом деле расположено не на самой поверхности дороги, а чуть выше неё.

Это стандартное объяснение миража, и оно является вполне удовлетворительным, хотя и не особо вдохновляющим. Но существует другое объяснение того же явления, которое математически эквивалентно первому, но рисует всю картину существенно иначе. Это объяснение основано на принципе наименьшего времени, предложенном французским математиком Пьером Ферма в 1650 году, который гласит, что свет всегда распространяется по пути, для прохождения по которому ему требуется минимальное время.

Этот принцип прекрасно объясняет, почему свет в однородной среде распространяется по прямой линии, но как с его помощью объяснить мираж? Допустим, нам известно, что скорость света в менее плотном воздухе больше, чем в более плотном. Поскольку воздух вблизи дороги более горячий и менее плотный, то и свет вблизи дороги движется быстрее, чем вдали от неё. Теперь представьте себе луч света, который собирается попасть из точки A в точку В. Какой путь он выберет, руководствуясь принципом Ферма?

Один из возможных путей — это отрезок прямой линии, соединяющий точки A и B. Однако в этом случае свету придётся проделать весь путь в холодном и плотном воздухе. Другой возможный путь показан на рисунке. В этом случае свет проходит большее расстояние, но он проводит большее время в менее плотном воздухе вблизи поверхности дороги, где он движется быстрее. Вычислив общее время, затраченное светом в каждом из двух вариантов, вы обнаружите, что кривой путь оказывается более быстрым, чем прямой.

Если задуматься, то всё это очень странно. Откуда свет заранее может знать, какой путь является самым быстрым? Не может же он «обнюхать» все возможные пути, прежде чем окончательно выбрать правильный? Разумеется, нет. Он просто повинуется локальным физическим законам, которые говорят ему, что следует делать в каждый конкретный момент, а математически (после интегрирования) это всегда оказывается путь, требующий минимального времени. В этом выводе есть что-то, вызывающее чувство глубокого удовлетворения. Он кажется более фундаментальным, чем альтернативное описание с позиции преломления света в различных слоях воздуха. Так оно и есть. Теперь мы понимаем, что законы движения любых объектов могут быть выражены в форме, похожей на принцип Ферма. Кроме того, эта новая форма выражения классических ньютоновских законов движения привела Фейнмана к разработке новых методов описания квантово-механического поведения частиц.

Путём предоставления различных, но эквивалентных способов описания мира математика открывает перед нами новые пути понимания природы. Новый способ описания — это больше, чем пересказ другими словами. Новая картина может помочь нам обойти препятствия, которые представлялись непреодолимыми с прежних позиций. Например, методы, основанные на принципе, аналогичном принципу Ферма, позволили применить квантовую механику в таких областях, в которых она до сих пор считалась неприменимой. В частности, стоит упомянуть недавние попытки Стивена Хокинга понять, может ли квантовая механика привести к переосмыслению общей теории относительности.

Поскольку математические соотношения играют ключевую роль в нашем понимании природы, открывая новые способы описания мира, то неизбежно возникает следующий вопрос, наедине с которым я хочу оставить вас в конце этой главы. Если описание природы является математической абстракцией, то какой смысл имеет утверждение, что мы понимаем Вселенную? Например, в каком смысле законы Ньютона объясняют, почему физические тела движутся? Обратимся снова к Ричарду Фейнману:

Что значит «понять» что-либо? Представьте себе, что сложный строй движущихся объектов, который и есть мир,это что-то вроде гигантских шахмат, в которые играют боги, а мы следим за их игрой. В чём правила игры, мы не знаем; всё, что нам разрешили,это наблюдать за игрой. Конечно, если посмотреть подольше, то кое-какие правила можно ухватить. Под основными физическими воззрениями, под фундаментальной физикой мы понимаем правила игры. Но, даже зная все правила, можно не понять какого-то хода просто из-за его сложности или ограниченности нашего ума. Тот, кто играет в шахматы, знает, что правила выучить легко, а вот понять ход игрока или выбрать наилучший ход порой очень трудно. Ничуть не лучше, а то и хуже обстоит дело в природе. Не исключено, что в конце концов все правила будут найдены, но пока отнюдь не все они нам известны. То и дело тебя поджидает рокировка или какой-нибудь другой непонятный ход. Но помимо того, что мы не знаем всех правил, лишь очень и очень редко нам удаётся действительно объяснить что-либо на их основе. Ведь почти все встречающиеся положения настолько сложны, что нет никакой возможности, заглядывая в правила, проследить за планом игры, а тем более предугадать очередной ход. Приходится поэтому ограничиваться самыми основными правилами. Когда мы разбираемся в них, то уже считаем, что «поняли» мир[10].

вернуться

10

Фейнман Р., Лейтон Р., Сэндс М. Фейнмановские лекции по физике. Вып. 1, гл. 2. — М.: Мир, 1965.