В отличие от предположения о гидростатическом равновесии, перечисленные в предыдущем абзаце предположения не следуют из основных физических законов. Более того, мы знаем из наблюдений, что Солнце вращается вокруг своей оси, что на его поверхности имеются тёмные образования, называемые солнечными пятнами, что разные части солнечной поверхности обращаются с разной скоростью и что количество солнечных пятен меняется циклически с периодом около одиннадцати лет. Но мы игнорируем все эти сложности, потому что, с одной стороны, они, прошу прощения за тавтологию, сильно осложняют расчёты, а с другой стороны — выглядит вполне правдоподобным предположение, что кинетическая энергия вращения Солнца и процессы, происходящие на солнечной поверхности, играют очень незначительную роль в общем энерговыделении Солнца, и их можно без зазрения совести отбросить в свете нашей задачи.
Но насколько хорошо работает эта модель? Лучше, чем мы могли бы ожидать. Она предсказывает размеры Солнца, температуру его поверхности, светимость и возраст с очень хорошей точностью. Более того, подобно хрустальному бокалу, вибрирующему, когда вы водите мокрым пальцем по его краю, или Земле, колеблющейся, когда где-то в её коре происходит землетрясение, Солнце тоже испытывает колебания, возбуждаемые происходящими в его недрах процессами. Эти колебания приводят к периодическим движениям поверхности Солнца, которые можно наблюдать с Земли, и их частота и амплитуда могут многое рассказать нам о строении солнечных недр, подобно тому как сейсмические колебания в земной коре позволяют нам обнаруживать залежи полезных ископаемых или нефтяные месторождения. Стандартная солнечная модель — модель, основанная на перечисленных выше предположениях, — более-менее точно предсказывает частотный спектр наблюдаемых колебаний солнечной поверхности.
Таким образом, представление Солнца в виде сферического газового шара в вакууме даёт нам модель, которая оказывается весьма близкой к реально наблюдаемой картине. Но существует одна проблема. Помимо света и тепла, идущие внутри Солнца ядерные реакции производят и множество других вещей, наиболее интересными из которых являются элементарные частицы, называемые нейтрино. Эти частицы имеют важное отличие от частиц, из которых состоит обычное вещество: они настолько слабо взаимодействуют с ним, что большинство нейтрино пролетают сквозь всю толщу Солнца и сквозь всю толщу Земли, даже не замечая её.
За то время, в течение которого вычитали предыдущее предложение, сквозь ваше тело пролетело порядка триллиона нейтрино, рождённых в раскалённых солнечных недрах. Причём неважно, днём или ночью вы читаете эти строки, поскольку толща Земли, как я уже сказал, не является для нейтрино сколько-нибудь заметным препятствием. Предсказанные в 1930-х годах нейтрино сегодня играют очень важную роль в нашем понимании природы. Но солнечные нейтрино поставили учёных в тупик.
Стандартная солнечная модель, так замечательно предсказывающая все основные наблюдательные характеристики Солнца, позволяет нам вычислить, какое количество нейтрино, рождаемых в недрах Солнца, должно достигать земной поверхности. И хотя вы, возможно, подумали, что этих неуловимых тварей невозможно обнаружить, учёные всё-таки научились их регистрировать. Для этого были построены огромные подземные лаборатории, в которых экспериментаторы сутками напролёт терпеливо ждут, когда одно из множества нейтрино будет обнаружено детектором. Такие детекторы называются нейтринными телескопами. Первый из них был построен в глубокой шахте в штате Южная Дакота. Приёмником нейтринного излучения в нём служил горизонтальный цилиндрический бак длиной около 14 метров, содержащий примерно 400 000 литров перхлорэтилена. В редких случаях один из атомов хлора в этом объёме под действием нейтрино превращался в атом аргона, что давало возможность оценить число летящих к нам от Солнца нейтрино. После двадцати пяти лет исследований было обнаружено, что количество регистрируемых нейтрино в 3–4 раза меньше, чем предсказывает Стандартная солнечная модель.
Вашей первой реакцией на это сообщение может быть пожимание плечами — зачем так много шума из ничего. Предсказание результатов, которые по порядку величины согласуются с экспериментами, уже можно рассматривать как большой успех, поскольку эти предсказания опираются на довольно грубые предположения об устройстве солнечной печи.
И действительно, многие физики восприняли это всего лишь как свидетельство того, что по крайней мере одно из принятых приближений является слишком грубым. Другие, прежде всего те, кто участвовал в разработке Стандартной солнечной модели, утверждали, что это крайне маловероятно, поскольку во всех остальных предсказаниях модель демонстрировала прекрасное согласие с наблюдениями.