Выбрать главу

На самом деле — и я ещё вернусь к этому в конце книги — не исключено, что неспособность теории струн предсказать что-либо похожее на нашу Вселенную (по мнению некоторых теоретиков) может означать, что попросту не существует никакого фундаментального физического объяснения, почему Вселенная именно такая, а её наблюдаемые свойства являются результатом простого случайного стечения обстоятельств!

Однако я начал рассказывать о дополнительных измерениях и о теории струн не для того, чтобы превозносить или хоронить её. Я не могу быть арбитром в таком вопросе и рассказываю обо всём этом, чтобы продемонстрировать, в какие новые гипотетические миры порой загоняет теоретиков поиск симметрии. Один физик определил красоту, связанную с симметрией в дополнительных измерениях, термином «элегантность». Время покажет, присуща ли эта элегантность самой природе или же она существует только в глазах смотрящего.

Опять меня унесло на границы физики высоких энергий. Есть множество примеров того, как симметрии управляют явлениями нашей повседневной жизни, никак не связанными с существованием новых сил в природе. Давайте же вернёмся к ним.

Примерно до 1950 года важным разделом физики, в котором симметрия проявила себя явно, была физика кристаллов. Подобно фейнмановской шахматной доске, кристаллы характеризуются симметричным расположением атомов в жёсткой кристаллической решётке. Эта симметрия находит своё отражение в завораживающей красоте алмазов и других драгоценных камней. Более непосредственное отношение к физике имеет движение электронов внутри кристаллической решётки, которое, подобно движению пешек на шахматной доске, может полностью определяться симметрией решётки. Например, тот факт, что узор решётки повторяется в пространстве с определённой периодичностью, накладывает ограничения на возможный спектр импульсов электронов, движущихся внутри решётки. Это происходит из-за того, что порядок расположения атомов в кристалле подразумевает, что вы можете произвести сдвиг системы координат только на строго определённое расстояние, чтобы кристалл в новой системе выглядел точно так же, как и в прежней. Я знаю, это немного напоминает странные скачки из «Алисы в Стране чудес», но такая периодичность влечёт за собой важные физические следствия. Так как импульс связан с симметрией физических законов относительно сдвига системы координат в пространстве, факторы, накладывающие ограничения на возможную величину и направление этого сдвига, приводят к тому, что набор доступных электрону импульсов оказывается ограниченным.

Этот простой факт лежит в основе работы всей современной микроэлектроники. Если поместить электроны внутрь кристаллической структуры, они будут способны свободно передвигаться, только обладая определённым набором импульсов. Это также означает, что электроны могут обладать лишь фиксированным набором энергий. Однако, в зависимости от химического состава кристалла, может случиться так, что электроны вообще не смогут перемещаться по нему, а окажутся связанными в узлах решётки. Материал будет проводить электричество только в том случае, если спектр доступных импульсов и энергий будет соответствовать энергиям, при которых электроны могут свободно переходить от одного атома к другому. В современных полупроводниках, таких как кремний, необходимая для работы электронных приборов проводимость достигается путём добавления в полупроводник определённых примесей, которые уменьшают энергию связи электронов с атомами, в результате чего проводимость материала приобретает сильную зависимость от разнообразных внешних условий.

Аналогичные механизмы, возможно, имеют отношение и к одной из величайших загадок физики конденсированных сред. Начиная с 1911 года, когда Оннес открыл сверхпроводимость ртути, и вплоть до 1987 года не было обнаружено ни одного вещества, переходящего в сверхпроводящее состояние при температуре выше 20 Кельвин. Поиски такого вещества были для физиков сродни поискам Святого Грааля для рыцарей Круглого стола. Если бы удалось обнаружить сверхпроводник, работающий, например, при комнатной температуре, это привело бы к революции в электротехнике. Возможность уменьшения до нуля электрического сопротивления без использования сложных охлаждающих систем привела бы к появлению в нашей жизни совершенно новых электрических устройств. И вот в 1987 году двое учёных, работавших на IBM, методом проб и ошибок обнаружили вещество, переходящее в сверхпроводящее состояние при температуре на 35 градусов выше абсолютного нуля. Вскоре были открыты и другие аналогичные материалы. К настоящему времени достигнута уже температура перехода к сверхпроводимости 100 Кельвин. Это всё ещё далеко от комнатной температуры, но уже выше точки кипения жидкого азота, который относительно дешёв в производстве[17]. Когда новое поколение высокотемпературных сверхпроводников начнёт массово использоваться в промышленности, мы станем свидетелями появления совершенно новых поразительных технологий.

вернуться

17

В 2015 году было обнаружено, что обычный сероводород под давлением в миллион атмосфер переходит в сверхпроводящее состояние при температуре 203 кельвина (-70 °С), а это уже температура даже не жидкого азота, а сухого льда! — Примеч. пер.