Выбрать главу

Самым удивительным в высокотемпературной сверхпроводимости оказалось то, что в обычном состоянии исходные вещества для этих сверхпроводников являются изоляторами. Без добавления примесей они вообще не проводят электрический ток.

Несмотря на отчаянные усилия тысяч физиков, чёткого понимания высокотемпературной сверхпроводимости не существует до сих пор. Но первое, на чём они фокусируют свои усилия, — это на изучении симметрии кристаллической решётки таких веществ. Выяснилось, что кристаллическая структура состоит из отдельных атомных слоёв, которые существуют как бы независимо друг от друга. Ток может течь вдоль этого двумерного слоя, но не перпендикулярно ему. Ещё предстоит выяснить, является ли этот частный вид симметрии высокотемпературных сверхпроводников ответственным за те взаимодействия, которые приводят к макроскопическому сверхпроводящему состоянию электронов, но если история чему-то учит, то приведённый пример является хорошим уроком.

Независимо от того, сможет ли симметрия кристаллических решёток революционизировать электрические технологии, она уже сыграла немаловажную роль в революции в биологии. В 1905 году сэр Уильям Брэгг и его сын сэр Лоренс Брэгг были удостоены Нобелевской премии за замечательное открытие. Если осветить кристалл рентгеновскими лучами, длина волны которых сравнима с расстояниями между атомами, на экране появится характерный регулярный узор. Изучая этот узор, можно восстановить пространственную структуру кристаллической решётки. Новая техника исследования строения вещества получила название рентгеноструктурный анализ. Этот анализ стал мощным инструментом изучения пространственной конфигурации атомов в разных материалах, особенно в сложных органических веществах, молекулы которых могут состоять из десятков тысяч атомов. Наиболее важным результатом применения этой техники стало открытие Уотсоном и Криком структуры двойной спирали ДНК.

Физика конденсированных сред не ограничивается технологическими разработками. С её помощью были исследованы глубокие соотношения между симметрией и динамикой процессов, что привело к новому пониманию фазовых переходов. Я уже рассказывал, что вблизи определённых критических значений некоторых параметров, таких как температура или магнитное поле, совершенно разные материалы проявляют схожие шаблоны поведения. Это происходит из-за того, что микроскопические особенности строения вещества в критической точке становятся неактуальными, и ответственность за всё берёт на себя симметрия.

Вода в критической точке и намагниченное железо в критической точке ведут себя похожим образом по двум причинам. Во-первых, флуктуации в критической точке происходят одновременно на всех масштабах, например, ни в коей мере невозможно сказать о воде, в каком состоянии она находится: в жидком или в газообразном. Поскольку вещество выглядит одинаково на всех масштабах, локальные микрофизические свойства, такие как структура молекул, теряют свою актуальность. Во-вторых, всё, чем характеризуется состояние воды в критической точке, это её плотность, и даже не столько плотность, сколько отклонение плотности от средней величины в большую или в меньшую сторону. То есть вода в критической точке может быть полностью описана при помощи двух чисел: +1 и -1, и то же самое касается характеристики намагниченности железа в его критической точке.

Обе эти причины неразрывно связаны с симметрией. Вода и намагниченное железо в критической точке в некотором смысле подобны шахматной доске. Существуют только две степени свободы: чёрный и белый цвет клеток, повышенная или пониженная плотность, направление намагниченности вверх или вниз. Но ведь так бывает не всегда. Основной параметр, характеризующий возможные состояния системы вблизи критической точки, может иметь больше степеней свободы, например иметь величину и направление. Такая система будет выглядеть вблизи своей критической точки следующим образом:

Вы можете подумать, что основные характеристики поведения такого материала вблизи критической точки будут отличаться от поведения воды или идеализированного куска намагниченного железа, и будете правы. Но в чём состоит главное различие между этим рисунком и рисунком фазового перехода воды? В наборе возможных значений параметра, описывающего фазовый переход. А что характеризует этот набор возможных значений? Основные симметрии этого параметра порядка. В зависимости от типа симметрии параметр порядка может принимать значения, соответствующие, например, координатам точки на окружности, на прямой, на сфере, в квадрате, в треугольнике и так далее.