Взявшись за решение поставленной мне Лузиным общей проблемы, я начал с частного случая борелевских множеств низших классов и стал доказывать, что всякое несчётное множество типа Fσδσδ. (я их называл множествами четвёртого класса) имеет мощность континуума. При решении задачи в этом частном случае уже полностью выявилась и общая идея. Фактически было доказано, что всякое множество упомянутого класса может быть получено применением A-операции к замкнутым множествам и затем было доказано, что всякое несчётное A-множество содержит совершенное множество. Однако когда я сообщил свою идею доказательства Н. Н. Лузину, он отнёсся к ней с недоверием и стал меня убеждать в том, что мой план доказательства ни к чему, кроме множеств Fσδ, привести не может. Любопытно, что когда много лет спустя, в 1923 г.Урысон и я стали излагать A-операцию (ставшую к тому времени, как нам казалось, общим достоянием теории множеств) известному математику Каратеодори, издавшему перед тем свою книгу по теории множеств и функций, то Каратеодори стал с полной уверенностыо доказывать нам, что всякое А-множество в действительности есть множество типа Fσδ. Значит, при всей простоте понятия A-операции было в нём что-то, создававшее какие-то психологические трудности при первом с ним ознакомлении. Конечно, вполне возможно и то, что моё первое изложение идеи доказательства было недостаточно чётким и оправдывало скептицизм Н. Н. Лузина. Но, так или иначе, скептицизм этот был полный и Н. Н. Лузин рекомендовал мне в отмену моего плана решать задачу в противоположном смысле и пытаться строить борелевское множество мощности 0א. К счастью, я не послушался на этот раз своего учителя. К концу лета мне удалось провести своё доказательство в полной общности и во всех деталях. Первый человек, которому я его подробно рассказал и который проверил его со всей самой придирчивой строгостью, был В. В. Степанов, как никто умевший критически разбирать доказательства в любой известной тогда области математики. Затем доказательство было рассказано И. И. Привалову
С того самого времени, когда Лебег в своём знаменитом мемуаре 1905 г. провозгласил, что в математике фактически не существует множеств, кроме борелевских, вопрос об их мощности воспринимался как один из центральных во всей теории множеств и его решение рассматривалось как большое открытие. На мой доклад 13 октября 1915 г. в студенческом математическом кружке пришли даже такие маститые профессора как Л. К. Лахтин и Б. К. Млодзеевский. Были на моём докладе Д. Ф. Егоров и Н. Н. Лузин, а также и все молодые математики, начиная с В. В. Степанова и И. И. Привалова и все интересующиеся математикой наши студенты. Среди них был и П. С. Урысон, только что поступивший в университет. С ним я тогда впервые познакомился. Впервые я познакомился в этот день и с В. К. Серпинским. Он уже находился тогда в Москве и тоже пришёл на мой доклад в студенческом математическом кружке. Суслина я в эту осень увидел впервые тоже на своём докладе. Естественно, что как только мы наконец встретились, я рассказал ему во всех подробностях о своих результатах. Мы стали без конца говорить о связанных с ними вопросах. Часто в наших разговорах принимал участие и В. В. Степанов, всегда живо откликавшийся на всё, что происходило в тогдашней московской математике. Тогда же именно Суслин предложил назвать новую построенную мною теоретико-множественную операцию А-операцией, а множества, получающиеся её применением к замкнутым множествам, А-множествами. Он подчеркнул при этом, что предлагает эту терминологию в мою честь по аналогии с борелевскими множествами, которые уже тогда стало принято называть В-множествами.
Эта касающаяся меня терминологическая деталь была по живым следам отмечена в статьях М. А. Лаврентьева и Л. А. Люстерника, посвящённых истории Московской математической школы, а позже и в статье Л. В. Келдыш. Мне этот вопрос о моём приоритете в данном случае никогда не был безразличен, ведь он касался моего первого и (может быть, именно поэтому) самого дорогого мне результата.
Много лет спустя Н. Н. Лузин стал называть A-множества аналитическими множествами и стал, вопреки хорошо известным ему фактам, утверждать, что термин A-множество есть лишь сокращение от «аналитические множество». Но к этому времени мои личные отношения с Н. Н. Лузиным, когда-то глубокие и проникновенные, были, по существу, утрачены.
Как только было доказано, что всякое B-множество является A-множеством, естественно возник вопрос, не является ли обратно всякое A-множествоB-множеством. Именно об этом вопросе и шла, конечно, речь в беседах, которые тогда велись в Москве в связи с моей работой. Легко было доказать, что всякое A-множество есть пересечение B-множеств, взятых в числе 1א, или что всякое множество, дополнительное к A-множеству, есть сумма 1א борелевских слагаемых. Это знали и я, и Суслин и, конечно, Н. Н. Лузин. Весь вопрос был в том, не обрывается ли этот процесс трансфинитного суммирования уже на счётном шаге. Я посвятил всю зиму 1915–1916 гг. и всё следующее лето доказательству того, что этот обрыв действительно происходит. Мои чрезвычайно упорные размышления прекратились только тогда, когда ранней осенью 1916 г. стало известным, что Суслин этим же летом построил пример А-множества, не являющегося В-множеством и этим открыл новый этап в развитии всей дескриптивной теории множеств.