Заметим, что в настоящее время большое внимание уделяется исследованиям низкотемпературной плазмы — смеси нейтральных атомов, свободных электронов и ионов, образовавшейся из атомов, потерявших один, редко два электрона. Температура такой плазмы составляет несколько тысяч или десятков тысяч градусов.
Низкотемпературная плазма может возникнуть в электрических дугах, газоразрядных источниках света или просто при нагревании газа до достаточно высокой температуры. Она находит все более широкое применение для различных технологических целей (плазменная резка металлов, сварка и др.), а также в качестве рабочего тела в установках прямого преобразования тепловой энергии в электрическую. Для термоядерного реактора требуется, конечно, высокотемпературная плазма.
Напомним, что водород имеет три изотопа: протий (Н) — обычный водород, ядром атома которого является протон; дейтерий — (D) — более тяжелый водород, его атомное ядро состоит из протона и нейтрона; тритий (T) — еще более тяжелый водород, его атомное ядро состоит из одного протона и двух нейтронов. Атомные массы трех названных изотопов водорода соответственно: 1, 2, 3.
По современным представлениям, как уже говорилось выше, источником энергии звезд, в том числе нашего Солнца, служит термоядерная реакция, в результате которой водород превращается в гелий и выделяется огромное количество энергии. Такая реакция протекает в недрах звезд, но осуществить ее в земных условиях, по-видимому, невозможно. Значительно проще, оказывается, осуществить реакцию между ядрами дейтерия и трития. При этом образуются ядра гелия, нейтроны, а также происходит огромное энерговыделение.
Возможность осуществления в земных условиях термоядерной реакции, исходными веществами для которой служат тяжелые изотопы водорода — дейтерий и тритий, доказана. Именно такая реакция протекает в термоядерной (водородной) бомбе, где она носит характер неуправляемого кратковременного мощного взрыва, результатом которого является разрушение. Для того чтобы использовать термоядерную реакцию в мирных целях, нужно научиться ее регулировать.
Следует заметить, что тяжелый изотоп водорода — тритий — вещество радиоактивное, период его полураспада небольшой, около 12 лет. Поэтому тритий на Земле практически не встречается. Но это не создает безвыходного положения. Вспомним, что плутония (239Pu) тоже не было на Земле. Однако теперь 239Pu является одним из самых распространенных ядерных топлив для атомных реакторов. Оказывается, тритий можно получить из щелочного металла лития (Li) путем бомбардировки его атомных ядер быстрыми нейтронами, образующимися, в частности, в термоядерной реакции слияния ядер D и Т. Можно даже вместо трития помещать в термоядерный реактор «тритиевое сырье» — литий. В процессе работы реактора тритий в нужном количестве будет производиться из лития.
Что касается ресурса ядерного топлива для термоядерной дейтерий-тритиевой реакции (или, как иногда ее именуют, D + Т-реакции), то в конце концов дело сводится к запасам лития. Действительно, ресурс дейтерия на Земле очень велик. Запасы дейтерия, содержащегося в воде морей и океанов (а получение дейтерия из воды рассматривается как дело несложное и экономически вполне оправданное), по энергетическому эквиваленту во много миллионов раз превышают ресурсы всех видов органического топлива, вместе взятых.
В отношении лития — даже с учетом того, что для получения трития «в дело идет» только изотоп лития (6Li), содержащийся в природном литии в количестве 7,4 %,— можно сказать, что его запасы достаточно велики. Они принимаются специалистами равными по энергетическому эквиваленту запасам урана на Земле.
Если удастся использовать термоядерную D + D-реакцию (а не D + Т-реакцию), то энергетический ресурс можно рассматривать как практически неограниченный.
Есть несколько различных предложений о способе практического осуществления управляемой термоядерной D + Т-реакции. Мы остановимся лишь на одном из них.
В Институте атомной энергии им. И. В. Курчатова под руководством Л. А. Арцимовича были разработаны установки типа токамак. Название «токамак» произошло от сокращения слов «тороидальная камера с магнитным полем». Создателям этих установок пришлось решать очень трудные задачи. Прежде всего нужно разогреть дейтерий-тритиевую плазму до температуры порядка 100 млн. градусов и достаточно длительно удерживать ее в этом состоянии.
В установке токамак нагревание плазмы до столь высокой температуры достигается за счет протекания через плазму электрического тока очень большой силы — порядка сотен тысяч ампер. Этот огромный ток возбуждается внешним индуктором. Вследствие электрического сопротивления плазмы образуется «джоулево» тепло, за счет которого происходит нагрев плазмы.
Еще более сложной задачей является сохранение (удержание) плазмы. Не может быть и речи, конечно, о соприкосновении плазмы со стенкой — на свете нет такого материала, который остался бы цел (не испарился бы) после такого соприкосновения. В токамаках удержание плазмы производится с помощью магнитного поля. Решающим является то, что плазму составляют частицы, имеющие электрический заряд, — ядра атомов и электроны, на которые можно воздействовать магнитным полем.
Высокотемпературная плазма в токамаке помещается в сосуде, который имеет форму кольца, схож с баранкой или спасательным кругом. Такое геометрическое тело называется тором. С помощью магнитной системы, размещенной вне тора, создается сильное магнитное поле, интенсивность которого возрастает по мере удаления от оси кольцевого канала тора. Плазма отжимается магнитным полем к оси канала тора. Именно в этом и заключается простая, но всегда восхищающая тех, кто с ней знакомится, идея токамака.
Для того чтобы термоядерная реакция могла протекать с большим выделением энергии, требуется еще иметь необходимую концентрацию ядер дейтерия и трития в единице объема (иначе говоря, плотность плазмы), а также достаточное время удержания плазмы. Эти две величины взаимосвязаны: чем выше концентрация ядер атомов, тем меньше необходимое время удержания и наоборот. Численно эта зависимость выражается критерием Лоусона: для каждой термоядерной реакции и температуры плазмы имеется минимально необходимое значение произведения концентрации ядер и времени удержания плазмы. Для D + Т-реакции и температуры 100 млн. градусов критерий Лоусона равен 3·1014. Это значит, что при концентрации ядер атомов, равной 1014 1/см3, время удержания плазмы должно быть во всяком случае не меньше секунды.
Как же обстоит дело в настоящее время с достижением необходимых значений температуры плазмы, концентрации ядер атомов и времени удержания?
Необходимая для D + Т-реакции температура пока еще не достигнута. Удалось, правда, подойти к ней довольно близко. Возможно, для достижения требуемой температуры окажется целесообразным впрыскивать в плазму разогнанные в ускорителе элементарные частицы высокой энергии.
В соответствии с критерием Лоусона для D+Т-реакции при уже достигнутой плотности плазмы 1014 1/см3 и еще не достигнутой температуре 100 млн. градусов нужно время удержания более секунды. Пока еще оно менее десятой доли секунды.
Получение необходимой температуры и времени удержания плазмы в большой мере зависит от размеров реактора. Снова приходится сталкиваться с геометрическим фактором: отношением поверхности объекта к его объему. Оказывается, из камеры токамака, в которой заключена плазма, несмотря на магнитное поле, все-таки происходит утечка частиц (относительная, выраженная, например, в процентах) так же, как утечка нейтронов из активной зоны атомного реактора; она становится тем меньше, чем больше объем камеры токамака, т. е. чем меньше отношение величины поверхности камеры к ее объему. Этот вывод проверен практикой.
Следовательно, способ увеличения времени удержания и температуры плазмы токамака найден — это увеличение размеров установки. Можно предполагать, что трудные задачи — повышение температуры и плотности плазмы — будут решены.