Составные ракеты, конструкция которых может быть различной, способны развивать первую, вторую и третью космические скорости.
Следует отметить, что теория составных ракет принадлежит Циолковскому.
Большинство летательных космических аппаратов (особенно с экипажем) имеют на борту источник тока (солнечную батарею, состоящую из фотоэлементов[371], или топливные элементы[372], или электрические аккумуляторы), который служит для питания ряда систем: терморегулирования, радиосвязи и радиотелеметрии, бортовой ЭВМ, ориентации, жизнеобеспечения и некоторых других.
В Советском Союзе среди организаций и отдельных ученых и конструкторов, работы которых (вслед за работами Циолковского) лежат в основе современной космонавтики, следует назвать Газодинамическую лабораторию (ГДЛ), созданную в 1921 г., в которой под руководством выдающегося советского ученого и конструктора Валентина Петровича Глушко (р. 1908) в 1929 г. были начаты разработки жидкостного и электрического ракетных двигателей, и Группу изучения реактивного движения (ГИРД), образованную в 1932 г., сыгравшую наряду с ГДЛ под руководством выдающегося советского ученого и конструктора Сергея Павловича Королева (1907–1966) основную роль в зарождении советского ракетостроения. В конце 1933 г. ГДЛ и ГИРД были объединены в Реактивный научно-исследовательский институт (РНИИ).
Если начало космической эры на Земле связывают, как уже говорилось, с запуском 4 ноября 1957 г. в СССР первого искусственного спутника Земли и, следовательно, с достижением спутником первой космической скорости, то второй важнейший этап в развитии космонавтики — день первого космического полета человека.
12 апреля 1961 г. советский гражданин Юрий Алексеевич Гагарин (1934–1968), ставший известным всему миру, совершил космический полет, облетев Землю на корабле «Восток» за 1 ч 48 мин. Это была большая победа человеческого гения, новая страница развития космонавтики.
Рис. 60. Принципиальная схема многоступенчатой составной ракеты.
1 — топливные отсеки; 2 — реактивные двигатели; 3 — полезный груз; 4 — головной обтекатель; 5 — отсек аппаратуры управления; 6 — силовые узлы связи ступеней.
Рис. 61. Схема ядерного ракетного двигателя.
1 — бак с жидким водородом; 2—насос; 3 — турбина для привода насоса; 4 — тепловыделяющие элементы ядерного реактора; 5 — сопло; в — защитный экран.
После этого последовало большое число запусков различных летательных космических аппаратов. Увеличивалось количество различных научно-технических задач, решаемых с целью дальнейшего изучения Луны, Земли, других планет Солнечной системы (Венеры, Марса). Советским космонавтом Алексеем Архиповичем Леоновым был впервые осуществлен выход в открытый космос, стали проводиться групповые полеты со стыковкой летающих космических аппаратов, намного увеличилась длительность полетов, появились автоматические межпланетные станции, стали применяться автоматические космические аппараты (например, луноходы) и многое другое.
Большим достижением, можно сказать, третьим историческим событием, в развитии космонавтики была лунная экспедиция, происходившая 16–24 июля 1969 г., в которой участвовали три американских космонавта (или, как говорят в США, астронавта) — Н. Армстронг, Э. Олдрин и М. Коллинз, — двое из которых (Н. Армстронг и Э. Олдрин) высаживались на поверхность Луны и пробыли на ней 21 ч 36 мин.
Каких же новых больших событий, новых исторических страниц можно ожидать в развитии космонавтики? Конечно, дать сколько-нибудь развернутый ответ очень трудно. Послушаем высказывания ученых.
Уже упоминавшийся выше один из крупнейших специалистов в области космонавтики, В. П. Глушко, пишет: «Начало 2-й половины XX в. ознаменовалось выходом человека в космос… Наша Родина открыла дорогу в космос^ Советский Союз первый осуществил полеты искусственных спутников Земли, Солнца, Луны, автоматических станций к Луне, Венере и Марсу, пилотируемых одноместных и многоместных кораблей, выход космонавта из корабля в открытый космос. Советские станции впервые достигли поверхности Луны и Венеры, сфотографировали обратную сторону Луны, осуществили мягкую посадку на Луну и передали на Землю изображение лунной панорамы. Первые мужчина и женщина, совершившие одиночные и групповые полеты в космосе, — граждане СССР»[373].
И немного дальше В. II. Глушко пишет: «В эти дни[374] во многих странах происходил переход от теоретических исследований, основоположником которых был К. Э. Циолковский, к лабораторным. Начали работать первые жидкостные ракетные двигатели, полетели первые жидкостные ракеты. Потребовалось около 30 лет упорного труда для создания первоосновы ракетной техники — мощных жидкостных ракетных двигателей с достаточно высокими показателями эффективности и надежности. Рождение этих двигателей открыло путь для разработки ракет различного назначения, решающих задачи освоения космоса»[375].
И далее В. П. Глушко пишет: «Однако ограничение возможности жидкостных ракет для решения задач дальних полетов в космос заставляют форсировать работы ведущиеся в различных странах по созданию ядерных и электрических ракетных двигателей. Эффективное сочетание на ракете жидкостных и электрических ракетных двигателей расширит энергетические возможности, и долгое время такая ракета будет являться основным средством для полетов в пределах нашей Солнечной системы».
Ясная точка зрения. К сказанному необходимо добавить, что ядерный ракетный двигатель, схема которого |(с твердофазной активной зоной) показана на рис. 61, представляет собой ракетный двигатель, рабочим телом которого является какое-либо вещество (например, водород), а теплом для нагревания рабочего тела служит энерговыделение активной зоны ядерного реактора. Из приведенной схемы видно, что жидкий водород из бака I поступает в насос 2, приводом которому служит газовая турбина 3. Жидкий водород омывает снаружи ядерный. реактор и сопло, при этом нагревается и испаряется. Основная масса теперь уже газообразного водорода протекает через реактор, омывая его тепловыделяющие элементы 4 и за счет этого нагревается еще более. Нагретый газообразный водород поступает в сопло 5, в котором он расширяется и вытекает с большой скоростью наружу, создавая необходимую тягу.
Рис. 62. Схема электротермического ракетного двигателя.
1 — подвод рабочего тела; 2 — камера нагрева и сопло; 3 — нагревающие элемент; 4 — опора нагревающего элемента.
Необходимо также сказать несколько слов об устройстве электрического ракетного двигателя. Напомним, что мощность любого ракетного двигателя в конце концов определяется температурой газа, вытекающего через сопло, и массой этого газа. Жидкостные ракетные двигатели, как об этом уже говорилось, имеют в этом отношении определенные ограничения (трудности с увеличением забираемого с Земли количества топлива и окислителя, большой расход тепла при температуре порядка 3000 К и выше на диссоциацию газа[376] и некоторые другие). Источником энергии электрического ракетного двигателя является бортовое устройство, вырабатывающее электрическую энергию (электрический генератор). До тех пор пока это устройство остается небольшим по своей мощности (солнечные или аккумуляторные батареи, современные топливные элементы), электрический ракетный двигатель, естественно, также имеет малую мощность, хотя в случае применения солнечных батарей может работать весьма долго. Такие установки используются для коррекции траектории и ориентации космических аппаратов, питания бортовых приборов и т. д. Важно заметить, что такие установки при малой силе тяги (в тысячи раз меньшей веса ракеты, почему они и не в состоянии вывести аппарат на орбиту искусственного спутника Земли)1 могут иметь огромную скорость истечения рабочего тела из сопла (10—100 км/с).
371
Высокая стоимость фотоэлементов в данном случае значения не имеет, так как их мощность и «тираж» относительно невелики.
372
Топливный электрохимический генератор, в котором происходит прямое преобразование химической энергии в электрическую; в настоящее время находят применение практически только так называемые кислородно-водородные топливные элементы, требующие для функционирования непрерывной раздельной подачи водорода и кислорода, что, конечно, дорого, поэтому они пока иногда применяются лишь в космических аппаратах.
373
Глушко В. П. Предисловие к первому изданию, — В кн.: Космонавтика: Маленькая энциклопедия. 2-е изд., доп. М., 1970, с. 5.
376
Диссоциация — распад частиц газа (молекул), происходящий при повышении температуры, как правило, с большим потреблением тепла.