Сама концепция общего знания требует некоторого пояснения. Для того чтобы определенная информация или ситуация X представляла собой общее знание двух человек, А и Б, недостаточно, чтобы каждому из них было известно об Х в отдельности. Каждый игрок должен также знать, что другой знает об Х, в противном случае А может подумать, что Б неизвестно об Х, и в разгар игры предпринять то или иное действие исходя из этого заблуждения. Однако тогда игрок А тоже должен знать, что Б знает, что А знает об Х, и наоборот, иначе А может по ошибке воспользоваться предполагаемым неведением Б о знании А. Безусловно, это еще не конец. Игрок А должен знать, что Б знает, что А знает, что Б знает, и так до бесконечности. Философы находят много забавного в изучении тонкостей этой бесконечной регрессии и тех интеллектуальных парадоксов, которые она может генерировать. Для нас общего представления о том, что игрокам свойственно общее понимание правил игры, будет достаточно.
Что происходит при взаимодействии стратегий рациональных игроков? В большинстве случаев ответ на этот вопрос сводится к концепции равновесия, под которой подразумевается, что каждый игрок использует стратегию, которая является лучшим откликом на стратегии других игроков. Мы сформулируем теоретико-игровые концепции равновесия в главах 3−7, а затем используем их в последующих главах.
Равновесие не означает, что ситуация не меняется; в играх с последовательными ходами стратегии игроков представляют собой исчерпывающий план действий и ответных реакций, а ситуация постоянно развивается по мере выполнения очередных ходов и реагирования на них. Равновесие также не означает, что складывается благоприятный ход игры; взаимодействие выбранных всеми игроками рациональных стратегий может привести к отрицательным результатам для всех, как в дилемме заключенных. Тем не менее в большинстве случаев мы будем исходить из того, что равновесие — полезный описательный инструмент и организующая концепция анализа игры. Подробнее мы рассмотрим эту идею позже, при обсуждении конкретных концепций равновесия. Мы также увидим, как понятие равновесия можно расширить или модифицировать, чтобы устранить некоторые его недостатки и включить в него поведение, которое недотягивает до полной расчетливой рациональности.
Подобно тому как рациональное поведение отдельных игроков может стать следствием накопления ими опыта ведения игры, они могут научиться корреспондировать свой выбор с общим равновесием после нескольких раундов игры, которые проводятся методом проб и ошибок и заканчиваются неравновесным исходом. Мы рассмотрим этот вопрос в главе 5.
Определить равновесие нетрудно, а вот найти его в конкретной игре (иными словами, решить ее) гораздо сложнее. На протяжении всей книги мы разберем целый ряд простых игр с участием двух или трех игроков, каждый из которых использует две-три стратегии или делает ход по очереди. Многие полагают, что это и есть предел возможностей теории игр, считая ее бесполезной для более сложных игр, ведущихся в действительности. Однако это не так.
Человек сильно ограничен в плане скорости вычислений (особенно длинных) и терпения при их выполнении. Следовательно, он способен легко решать только простые игры с двумя-тремя участниками и стратегиями. Но компьютеры прекрасно справляются с подобной задачей. Многие игры, решение которых выходит за рамки вычислительных возможностей человека, компьютерам вполне под силу. Они уже сейчас без проблем решают игры с высоким уровнем сложности, касающиеся бизнеса и политики. Даже в таких играх, как шахматы, которые слишком сложны, чтобы их можно было решить полностью, потенциал компьютеров уже сопоставим с возможностями самых именитых гроссмейстеров. Мы поговорим о шахматах более подробно в главе 3.
В настоящее время существует немало компьютерных программ для решения достаточно сложных игр, и постоянно появляются новые. Mathematica и другие аналогичные программные пакеты содержат стандартные программы для поиска равновесий в смешанных стратегиях в играх с одновременными ходами. В рамках проекта Национального научного фонда Gambit («Гамбит»), возглавляемого профессором Калифорнийского технологического института Ричардом Маккелви и профессором Миннесотского университета Эндрю Макленнаном, разрабатывается всеобъемлющий набор стандартных программ для поиска равновесий в играх с последовательными и одновременными ходами, в чистых и смешанных стратегиях, а также в играх с разными уровнями неопределенности и неполной информацией. В нескольких следующих главах мы будем неоднократно возвращаться к этому проекту. Его ключевое преимущество — открытый исходный код программ, доступ к которому можно получить на сайте проекта www.gambit-project.org.