Рис. 3.5. Выбор ветвей на дереве игры «курение»
Независимо от того, как вы отобразите свои размышления на дереве игры, логика анализа во всех случаях будет одинаковой и важной. Вы должны начать с рассмотрения узлов действий, ведущих непосредственно к концевым узлам. Оптимальный выбор для игрока, делающего ход в таком узле, можно определить путем сравнения его выигрышей в соответствующих концевых узлах. Использование вариантов выбора в конце игры для прогнозирования последствий более ранних действий позволяет рассчитать выбор в узлах, предшествующих узлам окончательного принятия решений. Затем то же самое можно сделать с предыдущими узлами и т. д. Передвигаясь таким образом по дереву игры в обратном направлении, вы можете решить всю игру.
Данный метод определения поведения в игре с последовательными ходами (смотреть вперед и рассуждать в обратном порядке) известен как метод обратных рассуждений. Как подразумевает само его название, сперва следует подумать, что произойдет во всех концевых узлах, а затем передвигаться по дереву в обратном направлении вплоть до начального узла, анализируя соответствующие действия. Поскольку такие рассуждения требуют передвижения в обратном направлении по одному шагу за один раз, этот метод обозначают также термином «обратная индукция». Мы предпочитаем термин «обратные рассуждения», ввиду того что он проще и получает все более широкое распространение, однако в других книгах по теории игр используется старый термин «обратная индукция». Вам следует просто запомнить, что они эквивалентны.
Когда все участники игры для выбора оптимальных стратегий применяют метод обратных рассуждений, такая совокупность стратегий в данной игре называется равновесием обратных рассуждений, а исход игры, обусловленный использованием этих стратегий, — исходом равновесия обратных рассуждений. В более сложных учебниках по теории игр эта концепция обозначается как совершенное равновесие подыгры; возможно, ваш преподаватель предпочитает именно этот термин. Мы приводим формальное объяснение и анализ совершенного равновесия подыгры в главе 6, но склоняемся к употреблению более простого и интуитивно понятного термина «равновесие обратных рассуждений». Теория игр предсказывает такой исход в качестве равновесия в игре с последовательными ходами, в которой все игроки становятся рациональными вычислителями в погоне за максимальным выигрышем. Далее в данной главе мы проанализируем, как этот прогноз подтверждается на практике. А пока вам следует знать, что во всех конечных играх с последовательными ходами, представленных в этой книге, есть по крайней мере одно равновесие обратных рассуждений. В действительности в большинстве игр присутствует в точности одно такое равновесие. И только в исключительных случаях, когда игрок получает одинаковые выигрыши в результате двух или более наборов ходов, а значит, не может отдать явное предпочтение ни одному из них, их может быть больше.
В игре «курение» равновесие обратных рассуждений наблюдается в случае, когда нынешняя Кармен выбирает стратегию «нет», а будущая Кармен — стратегию «продолжить». Когда нынешняя Кармен совершает оптимальное действие, пристрастившаяся к курению будущая Кармен вообще не появляется на свет, а значит, и не получает реальной возможности сделать ход. Однако призрачное присутствие будущей Кармен и стратегия, которую бы она предпочла, если бы нынешняя Кармен выбрала вариант «попробовать» и предоставила бы ей шанс сделать ход, — важный элемент игры, на самом деле являющийся ключевым в определении оптимального хода нынешней Кармен.
Итак, мы описали концепции дерева игры и анализа методом обратных рассуждений с помощью очень простых примеров, в которых решение было очевидным на основании словесных аргументов. А теперь перейдем к использованию этих концепций в более сложных ситуациях, когда выполнение вербального анализа усложняется, в связи с чем роль визуального анализа с помощью дерева игры возрастает.