Каковы шансы Рика, рассчитанные в начальном узле? Если Рик выбирает в нем вариант «прекратить», у него остается только один путь к победе: Келли получает иммунитет (вероятность 0,9), после этого поддерживает Рика (вероятность 1), и жюри голосует за него (вероятность 0,6). Поскольку победа Рика зависит от совокупности этих трех событий, общая вероятность его победы представляет собой произведение трех вероятностей: 0,9 × 1 × 0,6 = 0,54[39]. Если Рик в начальном узле выбирает вариант «продолжить», это открывает ему два пути к победе. Во-первых, он победит, если выиграет испытание на получение иммунитета (вероятность 0,45), после чего устранит Руди (вероятность 1) и все же получит голоса жюри в противостоянии с Келли (вероятность 0,4); общая вероятность победы при таком развитии событий составляет 0,45 × 0,4 = 0,18. Во-вторых, он станет победителем, если Келли выиграет испытание на получение иммунитета (вероятность 0,5), затем избавится от Руди (вероятность 1), а Рику достанутся голоса жюри (вероятность 0,6); в этом случае общая вероятность составляет 0,5 × 0,6 = 0,3. Общая вероятность победы Рика при выборе варианта «продолжить» представляет собой сумму вероятностей двух путей к победе, а именно 0,18 + 0,3 = 0,48.
Теперь Рик может сравнить вероятность выигрыша миллиона долларов при выборе варианта «прекратить» (0,54) с вероятностью победы в случае выбора варианта «продолжить» (0,48). С учетом предполагаемых значений различных вероятностей на дереве игры у Рика больше шансов на победу, если он откажется от участия в испытании на получение иммунитета. Следовательно, «прекратить» — его оптимальная стратегия. Хотя этот результат основан на присвоении определенных предполагаемых значений вероятностям тех или иных событий, он остается для Рика лучшим при выполнении следующих условий: 1) Келли с большой вероятностью выиграет испытание на получение иммунитета, если Рик откажется от дальнейшего участия в нем; 2) победа Рика в последнем голосовании жюри более вероятна в случае, если Келли, а не Рик, проголосует против Руди[40].
Этот пример служит нескольким целям. Главное — он показывает, как использование анализа методом обратных рассуждений позволяет решить даже сложное дерево игры со значительной внешней неопределенностью и отсутствием информации о точных значениях вероятностей. Мы надеемся, что это придаст вам уверенности касательно применения данного метода, а также научит превращать несколько расплывчатое вербальное описание в более точную логическую аргументацию. Вы можете возразить, что Рик выполнил такой анализ без построения дерева игры. Но знание системы или общей модели существенно упрощает эту задачу даже в новых незнакомых обстоятельствах. Следовательно, приобретение системных навыков, несомненно, заслуживает потраченных усилий.
Вторая цель данного примера — проиллюстрировать на первый взгляд парадоксальную стратегию «проиграть, чтобы выиграть», еще одно применение которой можно найти в спортивных соревнованиях, проходящих в два этапа, таких как чемпионат мира по футболу. Первый этап проводится в рамках лиги в нескольких группах по четыре команды в каждой. Две лучшие команды в каждой группе участвуют во втором туре чемпионата, где каждая команда встречается с другими командами согласно заранее оговоренной схеме. Скажем, команда, занявшая первое место в группе А, играет с командой, занявшей второе место в группе B, и т. д. В такой ситуации выигрышной стратегией для команды может стать поражение в одном из матчей первого этапа, если оно позволит ей занять второе место в группе, что обеспечит возможность сыграть следующий матч против команды, вероятность победить которую гораздо выше, чем в случае, если бы команда заняла первое место на первом этапе.
Резюме
Участникам игр с последовательными ходами необходимо проанализировать последствия своих текущих ходов, прежде чем выбирать действия. Как правило, анализ чистых игр с последовательными ходами требует построения дерева игры. Такое дерево состоит из узлов и ветвей, отображающих все вероятные действия каждого игрока при каждой возможности сделать ход, а также выигрыши для всех предполагаемых исходов игры. Стратегия каждого игрока представляет собой исчерпывающий план, описывающий его действия в каждом узле принятия решений в зависимости от всех возможных комбинаций действий, предпринятых другими игроками в предыдущих узлах. В играх с последовательными ходами используется концепция равновесия обратных рассуждений, в соответствии с которой игроки определяют свои равновесные стратегии посредством прогнозного анализа последующих узлов и выполненных в них возможных действий, а также путем применения этих прогнозов для вычисления лучшего текущего действия. Этот процесс известен как «обратные рассуждения» или «обратная индукция».
39
Читатели, которым необходимо изучить или освежить в памяти правила сложения и умножения вероятностей, найдут краткие инструкции в приложении к главе 7.
40
Читатели, которые знакомы с алгеброй вероятностей, могут решить эту игру, воспользовавшись более общими символами вместо конкретных значений вероятностей, как в упражнении U10 к этой главе.