Выбрать главу

Ряд типов игр предоставляет игрокам различные преимущества, такие, например, как преимущество первого хода. Наличие в игре большого количества участников или ходов приводит к росту дерева игры с последовательными ходами, но не меняет процесса ее решения. Иногда построение полного дерева игры может потребовать больше места или времени, чем это возможно на практике. Во многих случаях такие игры решаются путем простых логических размышлений или посредством определения стратегических сходных элементов различных действий, что позволяет уменьшить размер дерева игры.

При решении более крупных игр вербальные размышления могут привести к равновесию обратных рассуждений, если игра достаточно простая или ее полное дерево поддается построению и анализу. Если игра сложная, вербальные размышления слишком трудны, а полное дерево игры огромно, можно прибегнуть к помощи компьютерной программы. Игру в шашки удалось решить посредством такой программы, хотя полное решение игры в шахматы еще предположительно долго будет оставаться за пределами возможностей компьютеров. В реальных шахматных баталиях в определении ходов игроков присутствуют как элементы искусства (выявление закономерностей и возможностей в зависимости от рисков), так и науки (упреждающее вычисление вероятных исходов игры, вытекающее из результатов определенных ходов).

Проверка теории игр с последовательными ходами на первый взгляд подтверждает тот факт, что реальные игры демонстрируют иррациональность игроков или неспособность теории адекватно предсказывать их поведение. Встречный аргумент подчеркивает сложность фактических предпочтений в отношении различных возможных исходов игры, а также пользу стратегической теории для определения оптимальных действий в случаях, когда фактические предпочтения известны.

Ключевые термины

Ветвь

Дерево игры

Дерево решений

Концевой узел

Корень (дерева)

Метод обратных рассуждений

Начальный узел

Обратная индукция

Отсечение (ветвей)

Преимущество второго хода

Преимущество первого хода

Путь игры

Равновесие обратных рассуждений

Равновесный путь игры

Узел

Узел действия

Узел принятия решений

Функция промежуточной оценки

Ход

Экстенсивная форма

Упражнения с решениями

S1. Предположим, два игрока, Гензель и Гретель, участвуют в игре с последовательными ходами. Гензель ходит первым, Гретель — второй, причем каждый ходит только раз.

a) Нарисуйте дерево игры, в которой у Гензеля есть два возможных действия («вверх» или «вниз») в каждом узле, а у Гретель — три («вверх», «посредине» или «вниз»). Сколько узлов каждого типа (узлов принятия решений и концевых узлов) присутствует в дереве этой игры?

b) Нарисуйте дерево для игры, в которой у Гензеля и Гретель по три возможных действия («сидеть», стоять» и «прыгать») в каждом узле. Сколько узлов двух типов присутствует в дереве такой игры?

c) Нарисуйте дерево для игры, в которой у Гензеля четыре возможных действия («север», «юг», «восток», «запад») в каждом узле, а у Гретель — два («стоять» или «идти»). Сколько узлов двух типов присутствует в дереве такой игры?

S2. Определите, сколько чистых стратегий (исчерпывающих планов действий) находится в распоряжении каждого игрока в следующих играх. Перечислите все чистые стратегии каждого игрока.

S3. Для каждой из игр, представленных в упражнении S2, вычислите исход, полученный посредством равновесия обратных рассуждений, а также полную равновесную стратегию каждого игрока.