В данном случае универмаги так ранжируют пять возможных исходов этой игры: 5 (лучший исход) — в торговом центре Urban Mall вместе с другим универмагом; 4 — в торговом центре Rural Mall вместе с еще одним или двумя универмагами; 3 — один в Urban Mall; 2 — один в Rural Mall; 1 (худший исход) — один в Rural Mall после неудачной борьбы за место в Urban Mall, тогда как другие магазины уже получили лучшие якорные места в Urban Mall.
Поскольку в этих трех магазинах различные системы управления, они с разной скоростью готовят необходимые документы для получения торговой площади в новом торговом центре. В Frieda’s с этим справляются быстрее всех, затем следует Big Giant и наконец Titan, в котором процесс подготовки плана размещения филиала наименее эффективен. После подачи ими заявок на предоставление торговой площади торговый центр решает, какие универмаги выбрать. Учитывая узнаваемость названий Big Giant и Titan среди потенциальных покупателей, торговый центр выберет либо одного из них, либо обоих, прежде чем рассматривать запрос Frieda’s. Следовательно, Frieda’s не получит одну из торговых площадей в Urban Mall, если все три универмага подадут на них заявки; так будет даже в случае, если Frieda’s первым сделает свой ход.
a) Нарисуйте дерево этой игры с размещением универмагов в торговом центре.
b) Проиллюстрируйте процесс отсечения ветвей на дереве в ходе обратных рассуждений и используйте усеченное дерево для поиска равновесия обратных рассуждений. Опишите это равновесие с помощью (полных) стратегий, применяемых всеми универмагами. Какими окажутся выигрыши каждого универмага в случае исхода, полученного в результате равновесия обратных рассуждений?
S10 (дополнительное упражнение). Рассмотрим следующую ультимативную игру с переговорами, которая изучалась в ходе лабораторных экспериментов. Игрок, делающий предложение, ходит первым и предлагает разделить сумму в 10 долларов между собой и вторым игроком. Принцип дележа может быть любым. Например, игрок может оставить себе все 10 долларов, или взять себе 9 долларов и отдать 1 доллар оппоненту, или 8 долларов себе и 2 доллара другому игроку и т. д. (Обратите внимание, что в этом случае у предлагающего игрока одиннадцать возможных вариантов выбора.) Второй игрок, получив предложение о разделении общей суммы, может либо принять, либо отвергнуть его. Если он его примет, оба игрока получат предложенную сумму. Если отвергнет, оба не получат ничего.
a) Постройте дерево этой игры.
b) Сколько полных стратегий находится в распоряжении каждого игрока?
c) В чем состоит равновесие обратных рассуждений в этой игре при условии, что игроков интересует исключительно денежный выигрыш?
d) Предположим, второй игрок, Рейчел, примет любое предложение в 3 (или больше) доллара и отклонит любое предложение в 2 (или меньше) доллара. Допустим, предлагающий игрок, Пит, знает о стратегии Рейчел и хочет получить максимальный денежный выигрыш. Какую стратегию он применит?
e) Истинный выигрыш Рейчел (ее «полезность») может не совпадать с денежным выигрышем. Какие еще аспекты игры могут представлять для нее интерес? С учетом вашего ответа составьте набор выигрышей Рейчел, который бы сделал ее стратегию оптимальной.
f) В ходе лабораторных экспериментов игроки, как правило, не придерживаются равновесия обратных рассуждений. Игроки, делающие предложение, обычно предлагают соперникам сумму от 2 до 5 долларов. А те часто отклоняют предложения 3, 2 и особенно 1 доллар. Объясните, почему, по вашему мнению, происходит именно так.
Упражнения без решений
U1. «В игре с последовательными ходами игрок, делающий ход первым, непременно выиграет». Это утверждение истинно или ложно? Обоснуйте свой ответ посредством нескольких кратких предложений и приведите пример, иллюстрирующий его.