Эти два варианта выбора, «низко» для Строки и «посредине» для Столбца, представляют собой наилучший ответ игрока, сделавшего соответствующий выбор, на действие другого игрока. После такого выбора оба игрока не захотели бы по собственной инициативе переключаться на что-либо другое. Согласно определению некооперативной игры, игроки делают выбор независимо друг от друга; следовательно, такие односторонние изменения — все, что может предпринять каждый игрок. Но поскольку ни один из них к ним не склонен, было бы естественно называть данное положение вещей равновесием. В этом и состоит суть концепции равновесия Нэша.
Согласно несколько более формальной формулировке, равновесие Нэша[44] в игре представляет собой перечень стратегий (по одной на каждого участника), при котором ни один игрок не может увеличить выигрыш, выбрав другую стратегию из имеющихся в его распоряжении, если другие игроки придерживаются стратегий, оговоренных в этом перечне.
Для того чтобы лучше понять концепцию равновесия Нэша, давайте еще раз проанализируем игру на рис. 4.1. Возьмем какую-либо другую ячейку вместо ячеек «низко», «посредине», например ячейку, в которой Строка выбирает вариант «высоко», а Столбец — «слева». Может ли это сочетание стратегий быть равновесием Нэша? Нет, потому что, если Столбец применит стратегию «слева», Строка при выборе стратегии «внизу» вместо «высоко», которая обеспечивает выигрыш 4, получит более высокий выигрыш 5. Точно так же сочетание стратегий «внизу», «слева» не будет равновесием Нэша, поскольку Столбец может извлечь больше выгоды, перейдя на стратегию «справа» и тем самым увеличив свой выигрыш с 6 до 7.
Определение равновесия Нэша не требует, чтобы равновесные варианты выбора обязательно были лучше всех имеющихся вариантов. На рис. 4.3 отображена та же ситуация, что и на рис. 4.1, за одним исключением: выигрыш Строки от стратегий «внизу», «посредине» изменился на 5, то есть стал таким же, как и для стратегий «низко», «посредине». По-прежнему верно то, что при выборе Столбцом варианта «посредине» Строка не может добиться большего, чем в случае выбора варианта «низко». Следовательно, ни у одного игрока нет оснований для изменения действия в результате исхода «низко», «посредине», что позволяет квалифицировать данный исход как равновесие Нэша[45].
Рис. 4.3. Вариант игры, представленной на рис. 4.1, с равными выигрышами
Однако важно учесть, что равновесие Нэша не всегда оптимально для обоих игроков. На рис. 4.1 пара стратегий «внизу», «справа» обеспечивает выигрыши 9, 7, которые лучше для обоих игроков, чем выигрыши 5, 4 при равновесии Нэша. Тем не менее, играя независимо друг от друга, игроки не смогут придерживаться именно этих стратегий. Если Столбец предпочтет вариант «справа», Строка может захотеть заменить вариант «внизу» на «низко» и выиграть 12 вместо 9. Получение выигрышей 9, 7 потребует кооперативного действия, которое сделало бы такой «обман» невозможным. Мы рассмотрим данный тип поведения чуть ниже (и более подробно в главе 10), а пока просто хотим указать на тот факт, что равновесие Нэша может не соответствовать общим интересам игроков.
Чтобы закрепить понимание концепции равновесия Нэша, давайте еще раз посмотрим на рис. 4.2, отображающий игру в американский футбол. Если защита выберет стратегию «защита в случае паса», то лучший вариант для нападающих — «короткий пас» (выигрыш 5,6 против 5, 4,5 или 3). И наоборот, если команда нападения предпочтет вариант «короткий пас», то лучший вариант для защиты — «защита в случае паса», которая позволит команде нападения набрать всего 5,6 ярда, тогда как при выборе вариантов «защита в случае пробежки» и «блиц» команда защиты уступила бы 6 и 10,5 ярда соответственно. (Не забывайте, что записи в каждой ячейке таблицы игры с нулевой суммой — это выигрыши игрока под именем Строка, поэтому самый лучший вариант выбора для Столбца — тот, который обеспечивает самый низкий, а не самый высокий показатель.) В данной игре сочетание стратегий «короткий пас», «защита в случае паса» — это равновесие Нэша, а полученный выигрыш команды нападения составляет 5,6 ярда.
44
Эта концепция названа по имени математика и экономиста Джона Нэша, который сформулировал ее в докторской диссертации, написанной во время учебы в Принстонском университете в 1949 году. Кроме того, Нэш предложил решение кооперативных игр, которое мы рассмотрим в главе 17. В 1994 году Джон Нэш вместе с двумя другими специалистами по теории игр, Райнхардом Зелтеном и Джоном Харсаньи (мы проанализируем некоторые аспекты их работы в главе 8, главе 9 и главе 13), получил Нобелевскую премию по экономике. Биографическая книга Сильвии Назар «Прекрасный разум: жизнь гения математики и нобелевского лауреата Джона Нэша» (A Beautiful Mind: The Life of Mathematical Genius and Nobel Laureate John Nash (New York: Simon & Schuster, 1998) легла в основу художественного фильма, главную роль в котором исполнил Рассел Кроу. К сожалению, попытка объяснить в фильме концепцию равновесия Нэша оказалась неудачной. Мы расскажем о причинах в упражнении S13 в данной главе, а также в упражнении S14 в главе 7.
45
Однако обратите внимание, что сочетание стратегий «внизу», «посредине» с выигрышами 5, 5 не является равновесием Нэша. Если бы Строка выбрала вариант «внизу», лучший вариант выбора Столбца был бы не «посредине», а «справа». На самом деле вы можете проверить таким способом все остальные ячейки таблицы, чтобы убедиться, что ни одна из них не может быть равновесием Нэша.