Выбрать главу

Для того чтобы проиллюстрировать эту идею, давайте представим себе двух студентов-старшекурсников, встретившихся в университетской библиотеке[50]. Они понравились друг другу и хотели бы продолжить общение, но им нужно идти в разные аудитории на лекции. Гарри и Салли договариваются вместе выпить кофе после занятий, которые заканчиваются в 16:30. Во время лекций оба осознают, что из-за волнения забыли договориться о месте встречи. Существует два возможных варианта: Starbucks и Local Latte. К сожалению, эти кафе расположены на противоположных концах большого кампуса, поэтому оказаться в обоих примерно в одно и то же время невозможно. Кроме того, Гарри и Салли не обменялись телефонными номерами, из-за чего не могут отправить друг другу сообщения. Что же нужно сделать каждому из них?

На рис. 4.10 эта ситуация представлена в виде игры с матрицей выигрышей. У каждого игрока два варианта выбора: Starbucks и Local Latte. Выигрыш для каждого равен 1, если они встретятся, и 0, если нет. Анализ наилучших ответов позволяет быстро определить, что в игре два равновесия Нэша: одно — при котором Салли и Гарри выберут Starbucks, и второе — при котором они выберут Local Latte. Для обоих важно достичь одного из этих равновесий, причем какого — не играет роли, поскольку оба равновесия обеспечивают одинаковые выигрыши. Главное, чтобы они скоординированно выбрали одно и то же действие, неважно какое. Именно поэтому такую игру называют игрой с чистой координацией.

Рис. 4.10. Чистая координация

Но смогут ли Гарри и Салли успешно скоординировать свои действия? Или в конечном счете они окажутся в разных кафе и каждый будет думать, что другой его подвел? Увы, такой риск существует. Гарри может решить, что Салли отправится в Starbucks, потому что она что-то говорила о занятиях, которые проходят на той стороне кампуса, где расположен Starbucks. Но у Салли может быть противоположное убеждение относительно того, что сделает Гарри. При наличии множества равновесий Нэша игрокам при выборе одного из них необходим какой-то способ скоординировать свои убеждения или ожидания в отношении действий друг друга.

Эта ситуация аналогична тому, что произошло с героями истории «Какая шина?», рассказанной в главе 1, где мы обозначили метод координации термином «фокальная точка». В данном контексте одно из двух кафе может быть широко известно как место встречи студентов. Однако недостаточно, чтобы Гарри просто об этом знал. Он должен знать, что Салли знает, и что она знает, что он знает, и т. д. Иными словами, их ожидания должны сходиться в фокальной точке. В противном случае Гарри может сомневаться в том, куда пойдет Салли, поскольку он не знает, что она думает о том, куда пойдет он. Подобные сомнения могут возникнуть на третьем, или четвертом, или еще более высоком уровне размышлений о размышлениях[51].

Когда один из нас (Диксит) задал этот вопрос своим студентам, большинство первокурсников выбрали Starbucks, а старшекурсники — местное кафе в студенческом центре университетского городка. Такой расклад закономерен: первокурсники, которые прожили в кампусе совсем немного времени, фокусируют свои ожидания на всем известной национальной сети кафе, тогда как старшекурсники знают местное кафе, ставшее для них самым лучшим местом встречи, и считают, что их друзья придерживаются аналогичного мнения.

Если бы одно кафе было оформлено в оранжевых тонах, а другое — в багровых, то в Принстоне первое кафе служило бы в качестве фокальной точки, поскольку оранжевый — это цвет Принстонского университета, тогда как в Гарварде по той же причине фокальной точкой было бы кафе с багровым декором. Если один человек — студент Принстона, а другой — Гарварда, они могут вообще не встретиться: либо потому, что каждый из них считает свой цвет более приоритетным, либо по той причине, что каждый думает, что другой не проявит гибкость и не пойдет на компромисс. В более общем случае способность участников координационных игр найти фокальную точку зависит от наличия такой общеизвестной точки контакта, будь то историческая, культурная или языковая.

Б. Встретятся ли Гарри и Салли? И где? Игра в доверие
вернуться

50

Имена позаимствованы из художественного фильма 1989 года When Harry Met Sally («Когда Гарри встретил Салли») с его классической фразой «Мне то же, что и ей», главные роли в котором исполнили Мэг Райан и Билли Кристал.

вернуться

51

Томас Шеллинг предложил классический подход к решению координационных игр и сформулировал концепцию фокальной точки в своей книге The Strategy of Conflict (Шеллинг Т. Стратегия конфликта. — М.: ИРИСЭН, Социум, 2016). Его объяснение фокальных точек основывалось на результатах анализа ответов на вопросы, которые он ставил своим студентам и коллегам. Самым памятным был следующий вопрос: «Предположим, вы договорились встретиться с кем-то в Нью-Йорке в определенный день, но не назначили конкретное место или время, и у вас нет возможности связаться с этим человеком. Куда вы пойдете и в какое время?» Пятьдесят лет назад, когда этот вопрос был задан впервые, общепринятым фокальным местом считался Центральный вокзал; в настоящее время это могла бы быть лестница у театральной кассы TKTS на Таймс-сквер. Фокальным временем остается двенадцать часов дня.