Для того чтобы проиллюстрировать эту идею, давайте представим себе двух студентов-старшекурсников, встретившихся в университетской библиотеке[50]. Они понравились друг другу и хотели бы продолжить общение, но им нужно идти в разные аудитории на лекции. Гарри и Салли договариваются вместе выпить кофе после занятий, которые заканчиваются в 16:30. Во время лекций оба осознают, что из-за волнения забыли договориться о месте встречи. Существует два возможных варианта: Starbucks и Local Latte. К сожалению, эти кафе расположены на противоположных концах большого кампуса, поэтому оказаться в обоих примерно в одно и то же время невозможно. Кроме того, Гарри и Салли не обменялись телефонными номерами, из-за чего не могут отправить друг другу сообщения. Что же нужно сделать каждому из них?
На рис. 4.10 эта ситуация представлена в виде игры с матрицей выигрышей. У каждого игрока два варианта выбора: Starbucks и Local Latte. Выигрыш для каждого равен 1, если они встретятся, и 0, если нет. Анализ наилучших ответов позволяет быстро определить, что в игре два равновесия Нэша: одно — при котором Салли и Гарри выберут Starbucks, и второе — при котором они выберут Local Latte. Для обоих важно достичь одного из этих равновесий, причем какого — не играет роли, поскольку оба равновесия обеспечивают одинаковые выигрыши. Главное, чтобы они скоординированно выбрали одно и то же действие, неважно какое. Именно поэтому такую игру называют игрой с чистой координацией.
Рис. 4.10. Чистая координация
Но смогут ли Гарри и Салли успешно скоординировать свои действия? Или в конечном счете они окажутся в разных кафе и каждый будет думать, что другой его подвел? Увы, такой риск существует. Гарри может решить, что Салли отправится в Starbucks, потому что она что-то говорила о занятиях, которые проходят на той стороне кампуса, где расположен Starbucks. Но у Салли может быть противоположное убеждение относительно того, что сделает Гарри. При наличии множества равновесий Нэша игрокам при выборе одного из них необходим какой-то способ скоординировать свои убеждения или ожидания в отношении действий друг друга.
Эта ситуация аналогична тому, что произошло с героями истории «Какая шина?», рассказанной в главе 1, где мы обозначили метод координации термином «фокальная точка». В данном контексте одно из двух кафе может быть широко известно как место встречи студентов. Однако недостаточно, чтобы Гарри просто об этом знал. Он должен знать, что Салли знает, и что она знает, что он знает, и т. д. Иными словами, их ожидания должны сходиться в фокальной точке. В противном случае Гарри может сомневаться в том, куда пойдет Салли, поскольку он не знает, что она думает о том, куда пойдет он. Подобные сомнения могут возникнуть на третьем, или четвертом, или еще более высоком уровне размышлений о размышлениях[51].
Когда один из нас (Диксит) задал этот вопрос своим студентам, большинство первокурсников выбрали Starbucks, а старшекурсники — местное кафе в студенческом центре университетского городка. Такой расклад закономерен: первокурсники, которые прожили в кампусе совсем немного времени, фокусируют свои ожидания на всем известной национальной сети кафе, тогда как старшекурсники знают местное кафе, ставшее для них самым лучшим местом встречи, и считают, что их друзья придерживаются аналогичного мнения.
Если бы одно кафе было оформлено в оранжевых тонах, а другое — в багровых, то в Принстоне первое кафе служило бы в качестве фокальной точки, поскольку оранжевый — это цвет Принстонского университета, тогда как в Гарварде по той же причине фокальной точкой было бы кафе с багровым декором. Если один человек — студент Принстона, а другой — Гарварда, они могут вообще не встретиться: либо потому, что каждый из них считает свой цвет более приоритетным, либо по той причине, что каждый думает, что другой не проявит гибкость и не пойдет на компромисс. В более общем случае способность участников координационных игр найти фокальную точку зависит от наличия такой общеизвестной точки контакта, будь то историческая, культурная или языковая.
50
Имена позаимствованы из художественного фильма 1989 года When Harry Met Sally («Когда Гарри встретил Салли») с его классической фразой «Мне то же, что и ей», главные роли в котором исполнили Мэг Райан и Билли Кристал.
51
Томас Шеллинг предложил классический подход к решению координационных игр и сформулировал концепцию фокальной точки в своей книге The Strategy of Conflict (