Выбрать главу

Как будут развиваться события в этой игре? В ней по-прежнему присутствуют два равновесия Нэша. Если Гарри убежден, что Салли выберет Starbucks, ему лучше сделать то же самое, и наоборот. По тем же причинам Local Latte также является равновесием Нэша. Для того чтобы достичь любого из этих равновесий и избежать исходов, при которых игроки отправятся в разные кафе, им необходима фокальная точка, или сходимость ожиданий, точно так же как в игре с чистыми стратегиями и игре в доверие. Однако в битве полов риск неудачи с координацией действий выше. Игроки с самого начала находятся в достаточно симметричных ситуациях, однако каждое из двух равновесий Нэша обеспечивает им асимметричные выигрыши, а их предпочтения в отношении двух возможных исходов вступают в противоречие: Гарри ратует за встречу в Starbucks, а Салли — в Local Latte. Они должны найти способ нарушить эту симметрию.

В стремлении достичь предпочтительного для себя равновесия каждый игрок может прибегнуть к жестким действиям и стратегии, ведущей к лучшему равновесию. В главе 9 мы рассмотрим в деталях такие инструменты ведения игры, как стратегические ходы, которые участники подобных игр могут предпринять для обеспечения предпочтительного исхода. Или каждый игрок попытается угодить другому, что может обусловить досадную ситуацию, когда Гарри отправится в Local Latte, чтобы порадовать Салли, но обнаружит, что она решила доставить удовольствие ему и пошла в Starbucks (очень похоже на то, как герои рассказа О’Генри «Дары волхвов» выбирали подарки друг другу на Рождество). В качестве альтернативы в случае повторяющейся игры успешная координация действий может стать предметом переговоров и поддерживаться как равновесие. Например, Гарри и Салли могут договориться встречаться то в одном, то в другом кафе. В главе 10 мы проанализируем такое неявное сотрудничество в повторяющихся играх в контексте дилеммы заключенных.

Г. Встретятся ли Джеймс и Дин? Игра в труса

Наш последний пример в этом разделе касается координационной игры несколько иного типа. В ней игроки стремятся предотвратить (или не выбирать) одни и те же действия. Кроме того, последствия неудачной попытки координации в подобных играх куда более разрушительны, чем в других играх.

Эта история взята из игры, в которую якобы играли американские подростки в 1950-х годах. Двое подростков садятся в полночь в свои автомобили на противоположных концах улицы какого-нибудь американского городка и мчатся навстречу друг другу. Тот, кто свернет в сторону, чтобы избежать столкновения, становится «трусом», а тот, кто продолжает ехать прямо, считается победителем. Если оба подростка придерживаются прямого курса, происходит столкновение, в котором оба автомобиля получают повреждения, а оба водителя — травмы[54].

Выигрыши «труса» зависят от того, насколько негативным для себя игрок считает «плохой» исход (в данном случае это травмы водителя и повреждения автомобиля) по сравнению с перспективой прослыть трусом. Если слова задевают меньше, чем хруст металла, то таблица разумных выигрышей в варианте игры в труса 1950-х годов выглядит так, как на рис. 4.13. Каждый игрок больше всего хочет стать победителем, а не трусом, и оба одинаково не хотят столкновения автомобилей. Между этими двумя крайностями для вас предпочтительна ситуация, чтобы ваш соперник оказался трусом в игре с вами (сохранить лицо), чем самому стать трусом.

Рис. 4.13. Игра в труса

У этой истории есть четыре важных свойства, которые определяют игру в труса. Во-первых, у каждого игрока есть одна «жесткая» и одна «слабая» стратегия. Во-вторых, в игре присутствуют два равновесия Нэша в чистых стратегиях (иными словами, исходы игры, при которых один из игроков становится трусом или придерживается слабой стратегии). В-третьих, каждый игрок выбирает именно то равновесие, при котором другой игрок предпочитает стать трусом или применяет слабую стратегию. В-четвертых, когда оба придерживаются жесткой стратегии, оба получают очень плохие выигрыши. В играх такого типа реальная игра сводится к проверке ее участниками способов достижения предпочтительного для себя равновесия.

вернуться

54

Несколько измененный вариант этой игры стал знаменитым в 1955 году благодаря фильму с участием Джеймса Дина Rebel Without a Cause («Бунтарь без идеала»). В фильме два парня мчатся на своих автомобилях параллельно друг другу по направлению к крутому обрыву. Трусом станет тот, кто первым выпрыгнет из машины, прежде чем она рухнет в пропасть. Если другой слишком долго будет оставаться в машине, он рискует упасть в пропасть вместе с ней. Герои фильма называли это «игрой в труса». В середине 1960-х британский философ Бертран Рассел и другие борцы за мир использовали эту игру в качестве метафоры ядерной конфронтации между Соединенными Штатами Америки и Советским Союзом, а специалист по теории игр Анатоль Рапопорт дал ее формальное описание с точки зрения теории игр. Другие специалисты по теории игр предпочитают интерпретировать гонку вооружений как дилемму заключенных или игру в доверие. Короткий обзор и интересное обсуждение этой темы можно найти здесь: Barry O’Neill, Game Theory Models of Peace and War, in The Handbook of Game Theory, vol. 2, ed. Robert J. Aumann and Sergiu Hart (Amsterdam: North Holland, 1994), pp. 995–1053.