Очевидно, что доля побед Навратиловой в игре равна разности между 100 % и долей побед Эверт. Следовательно, это игра с нулевой суммой (хотя формально сумма выигрышей двух участниц составляет 100), поэтому мы можем представить всю необходимую информацию в таблице выигрышей, отобразив в каждой ячейке только выигрыш Эверт. На рис. 4.14 показана таблица выигрышей и доля побед Эверт в розыгрышах очков против Навратиловой в каждой из четырех возможных комбинаций их выбора стратегий.
Рис. 4.14. Отсутствие равновесия в чистых стратегиях
Правила решения игр с одновременными ходами говорят нам о том, что сначала следует попытаться найти доминирующие или доминируемые стратегии, а затем использовать анализ наилучшего ответа для поиска равновесия Нэша. Это полезное упражнение позволяет убедиться, что в данной игре нет доминирующих стратегий. Выполнив анализ наилучших ответов, мы приходим к выводу, что лучший ответ Эверт на стратегию ПЛ — стратегия ПД, а на стратегию ПД — стратегия ПЛ. Напротив, наилучший ответ Навратиловой на стратегию ПЛ — стратегия ПЛ, а на стратегию ПД — стратегия ПД. Ни в одной ячейке таблицы выигрышей равновесия Нэша нет, поскольку каждая теннисистка упорно пытается изменить свою стратегию. Например, начав с верхней левой ячейки таблицы, мы обнаружим, что Эверт предпочитает перейти от стратегии ПЛ к стратегии ПД, увеличив свой выигрыш с 50 до 90 процентов. Однако в левой нижней ячейке таблицы мы видим, что Навратилова считает разумным переключиться со стратегии ПЛ на ПД, увеличив свой выигрыш с 10 до 80 процентов. Как вы можете убедиться сами, аналогичным образом Эверт стремится изменить стратегии в нижней левой ячейке, а Навратилова — в верхней правой. В каждой ячейке таблицы одна участница неизменно старается изменить игру, поэтому мы можем бесконечно перемещаться в таблице по кругу в поисках равновесия.
Отсутствие равновесия Нэша в этой и других подобных играх содержит один значимый сигнал: в играх такого типа важно не то, что игроки должны сделать, а то, чего они не должны делать. В частности, каждая участница игры не должна постоянно или систематически выбирать один и тот же удар, оказываясь в такой ситуации. Если любая из теннисисток будет придерживаться определенной линии поведения, другая может воспользоваться этим. (Например, если бы Эверт постоянно делала обводящий удар по диагонали, Навратилова бы знала, что ей каждый раз необходимо прикрывать соответствующую сторону корта, и тем самым снизила бы шансы Эверт на успешное выполнение удара по диагонали.) Самое разумное, что могут сделать участницы игры, — действовать несколько бессистемно, рассчитывая на то, что элемент неожиданности поможет победить соперницу. Асимметричный подход подразумевает выбор каждой стратегии в определенном количестве случаев. (Эверт следует использовать свой более слабый удар достаточно часто, чтобы Навратилова не могла предугадать, какой удар будет направлен в ее сторону. Однако она не должна использовать удары двух типов по установленной схеме, поскольку это также приведет к потере элемента неожиданности.) Подход, при котором игроки выбирают действия случайным образом, известный как смешивание стратегий, подробно рассматривается в главе 7. Игра, представленная на рис. 4.14, может не иметь равновесия в чистых стратегиях, но ее все же можно решить посредством поиска равновесия в смешанных стратегиях, что мы и сделаем в разделе 1 главы 7.
Резюме
Участники игр с одновременными ходами выбирают стратегии, не зная о выборе других игроков. Такие игры можно изобразить в виде таблицы игры, в ячейках которой отображены выигрыши каждого игрока, а ее размерность равна количеству игроков. Игры с нулевой суммой с двумя участниками можно представить в сокращенном виде, отобразив в каждой ячейке таблицы игры только выигрыши одного игрока.