Но какая цена выгоднее для обоих ресторанов? При наличии симметрии допустим, что оба заведения назначат одну и ту же цену Р. Тогда прибыль каждого ресторана равна:
πx = πy = (P — 8) (44 — 2P + P) = (P — 8) (44 — P) = — 352 + 52P — P2.
Оба могут выбрать Р для максимизации формулы. Воспользовавшись уравнением, представленным в разделе 1.А, мы видим, что решение: Р = 52/2 = 26. Полученная в результате прибыль каждого ресторана составит 32 400 долларов в месяц.
На языке экономики соглашение о повышении цен до уровня, оптимального для обеих сторон, называется картелем. Высокие цены наносят ущерб потребителям, поэтому органы государственного регулирования США обычно пытаются предотвратить образование картелей и заставить компании конкурировать друг с другом. Явный сговор по поводу цен находится вне закона, но негласный сговор все же может иметь место в повторяющейся дилемме заключенных (мы проанализируем повторяющиеся игры такого рода в главе 10)[61].
Сговор необязательно приводит к повышению цен. В нашем примере, если один ресторан снизит цену, его объем продаж увеличится отчасти потому, что он переманит некоторых клиентов от конкурента, поскольку продукты (блюда) двух ресторанов взаимозаменяемы. В других контекстах две компании могут продавать взаимодополняющие продукты, скажем программное и аппаратное обеспечение. В этом случае, если одна из них снижает цену, объем продаж в обеих компаниях возрастает. При равновесии Нэша, когда две фирмы действуют независимо друг от друга, они не учитывают выгоду, которую принесло бы обеим снижение цен. Следовательно, они поддерживают цены на более высоком уровне, чем если бы координировали свои действия. Сотрудничество между такими компаниями привело бы к снижению цен, что было бы выгодно и клиентам.
Конкуренция не всегда подразумевает использование цен в качестве стратегических переменных. Например, рыболовные флотилии могут конкурировать за более крупный улов. В таком случае имеет место конкуренция по количеству, а не по цене, рассмотренная в данном разделе. Мы опишем конкуренцию по количеству чуть ниже, а также в нескольких упражнениях, размещенных в конце главы.
Наш второй пример взят из политики. Он требует немного больше математических выкладок, чем мы обычно используем, но мы объясним интуитивные идеи, лежащие в их основе, с помощью слов и графиков.
Рассмотрим выборы с участием двух партий или двух кандидатов. Каждая сторона пытается отнять голоса избирателей у другой стороны посредством рекламы — либо позитивных рекламных объявлений, подчеркивающих достоинства самой партии или кандидата, либо негативной рекламы, сфокусированной на недостатках соперника. Для простоты будем исходить из предположения, что изначально избиратели не владеют никакой информацией и не отдают предпочтения ни одной из партий, поэтому формируют свое мнение исключительно под влиянием рекламы. (Многие сказали бы, что это точное описание американской политики, но более продвинутые исследования в области политологии подтверждают тот факт, что информированные, стратегически мыслящие избиратели все же существуют. Мы проанализируем их поведение более подробно в главе 15.) Для того чтобы упростить ситуацию еще больше, допустим, что доля избирателей, голосующих за партию, равна доле партии в общей сумме расходов на рекламу избирательной кампании. Назовем партии или кандидатов Л и П; если Л тратит на рекламу x миллионов долларов, а П — y миллионов долларов, то Л получит долю x / (x + y) голосов, а П — у / (x + y) голосов. Читатели, заинтересовавшиеся этой областью практического применения теории игр, найдут более общее описание соответствующих методов в специальной литературе по политологии.
Сбор средств на оплату такой рекламы требует определенных затрат; к их числу относятся деньги на рассылку писем и телефонные звонки; время и труд кандидатов, партийных лидеров и активистов; будущее политическое вознаграждение для лиц, сделавших крупные пожертвования, а также возможные политические издержки в случае, если такое вознаграждение станет достоянием гласности и повлечет за собой скандал. Для простоты анализа предположим, что все эти затраты пропорциональны прямым затратам на проведение кампании х и у. В частности, допустим, что выигрыш партии Л оценивается как процент голосов за вычетом расходов на рекламу: 100x (x + y) — x. Аналогичным образом выигрыш партии П составляет: 100у / (x + y) — у.
61
Компании действительно пытаются вступать в явный сговор, когда им кажется, что они могут избежать наказания за это. Забавный и поучительный случай такого сговора можно найти в книге Курта Эйхенвальда «Информатор» (Курт Эйхенвальд. Информатор. М.: Азбука-классика, 2009).