Выбрать главу

Теперь можем определить наилучшие ответы. Поскольку это нельзя сделать без вычислений, выведем математическую формулу, а затем объясним ее общий смысл на интуитивном уровне. Для заданной стратегии х партии Л партия П выбирает стратегию у, чтобы максимизировать свой выигрыш. Условие первого порядка можно найти, зафиксировав значение х и приравняв производную от 100у / (x + y) — у по у к нулю. В итоге получим уравнение 100x / (x + y)2 — 1 = 0, или . На рис. 5.2 показан график этой функции, а также аналогичный график функции наилучшего ответа партии Л, а именно .

Рис. 5.2. Наилучшие ответы и равновесие Нэша в игре «политическая реклама»

Посмотрите на кривую наилучших ответов партии П. По мере роста значения переменной x партии Л значение переменной у партии П сначала немного повышается, а затем снижается. Если другая партия размещает мало рекламных материалов, то реклама первой партии обеспечит высокую отдачу в виде голосов избирателей, поэтому на незначительное увеличение расходов другой партии на рекламу целесообразно ответить еще более существенным увеличением собственных расходов на рекламу в целях усиления конкуренции. Однако если другая партия уже вкладывает в рекламу солидные средства, то реклама первой партии обеспечит мизерную отдачу по отношению к затратам на нее, поэтому лучше ответить на повышение рекламных расходов другой партии сокращением собственных расходов.

Оказывается, кривые наилучших ответов двух партий пересекаются в точках максимума. Опять же, некоторые алгебраические манипуляции с уравнениями этих двух кривых позволяют получить точные величины равновесных значений x и y. Вы можете убедиться, что в данном случае значение каждой из переменных x и y равно 25, или 25 миллионов долларов. (Предполагается, что речь идет о выборах в Конгресс; выборы в Сенат и президентские выборы обходятся в наши дни гораздо дороже.)

Как и в игре в ценообразование, здесь мы имеем дело с дилеммой заключенных. Если обе партии сократят расходы на рекламу в равной пропорции, это никак не повлияет на долю голосов избирателей, но при этом обе партии сэкономят на расходах, а значит, получат более крупный выигрыш. В отличие от картеля производителей взаимозаменяемых продуктов (который поддерживает высокие цены и наносит ущерб потребителям), соглашение между политиками о сокращении объема рекламы, по всей вероятности, принесло бы пользу избирателям и обществу в целом, подобно тому как картель производителей взаимодополняющих продуктов привел бы к снижению цен и выгоде потребителей. Из решения данной дилеммы заключенных извлекли бы пользу все. В действительности Конгресс уже несколько лет пытается это сделать и даже ввел частичные ограничения, однако политическая конкуренция слишком ожесточенная для того, чтобы обеспечить полное или длительное разрешение этой дилеммы.

Но что если партии находятся в несимметричных ситуациях? Тогда может возникнуть асимметрия двух типов. Одна партия (скажем, П) может иметь возможность размещать рекламу по более низкой цене, поскольку у нее есть доступ к средствам массовой информации. Или рекламные расходы партии П могут быть эффективнее, чем у партии Л, — например, доля голосов Л может составлять x / (x + 2y), тогда как доля голосов П — 2y / (x + 2y).

В первом случае партия П использует свой более дешевый доступ к рекламе, выбирая более высокий уровень расходов y для любого заданного значения x партии Л; иными словами, кривая наилучших ответов на рис. 5.2 смещается вверх. Равновесие Нэша смещается вверх и направо вдоль неизменной кривой наилучших ответов партии Л. Таким образом, в итоге партия П потратит на рекламу больше, а партия Л меньше, чем раньше. Это сродни ситуации, когда побеждающая сторона как будто «играет мускулами», а проигрывающая как будто сдается перед таким натиском.