Во втором случае кривые наилучших ответов обеих партий смещаются в соответствии с более сложной схемой. В итоге обе несут равные расходы на рекламу, но меньше 25, как в симметричной ситуации. В нашем примере, где эффективность рекламных расходов партии П в два раза превышает эффективность расходов партии Л, это приводит к тому, что объем расходов каждой партии составляет 200 / 9 = 22,2 < 25. (Следовательно, именно в симметричной ситуации наблюдается самая острая конкуренция.) Если рекламные расходы партии П более эффективны, верно также и то, что в связи с характером асимметричности кривых наилучших ответов новое равновесие Нэша вместо точек максимума этих двух кривых расположено на нисходящей части кривой наилучших ответов партии Л и восходящей части кривой наилучших ответов партии П. Иными словами, хотя обе партии тратят на рекламу одинаковую сумму, объем рекламных расходов партии П, находящейся в более благоприятных условиях, превышает сумму, вызывающую максимальный ответ партии Л, а объем рекламных расходов более слабой партии Л меньше суммы, способной вызвать максимальный ответ партии П. В конце данной главы приведено дополнительное упражнение (U12), которое позволит студентам с более высоким уровнем математических знаний вывести эти результаты.
Хотя стратегии (цены или расходы на политическую рекламу) и выигрыши (прибыль и доля голосов избирателей) в предыдущих двух примерах связаны с конкуренцией между компаниями или политическими партиями, данный метод поиска равновесия Нэша в игре с непрерывными стратегиями абсолютно универсален и вы можете использовать его для решения других подобных игр.
Предположим, игроки следуют под номерами 1, 2, 3, …. Обозначим их стратегии как х, у, z, … в этом порядке, а выигрыши — соответствующими заглавными буквами X, Y, Z, …. В общем случае выигрыш каждого игрока является функцией выбора всех игроков; отметим соответствующие функции как F, G, H, … На основании этой информации об игре составим выигрыши и запишем их так:
X = F (x, y, z, …), Y = G (x, y, z, …), Z = H (x, y, z, …).
Если использовать этот общий формат для описания нашего примера с ценовой конкуренцией между двумя игроками (компаниями), то стратегии x и y становятся ценами Px и Py. Выигрыши X и Y — это прибыль πx и πy. Функции F и G — квадратичные функции вида
πx = –8(44 + Py) + (16 + 44 + Py) Px — 2(Px)2.
Аналогичная формула есть для πy.
Согласно общему подходу, игрок 1 рассматривает стратегии игроков 2, 3, … как не поддающиеся его контролю и выбирает свою стратегию так, чтобы максимально увеличить собственный выигрыш. Следовательно, для каждого заданного множества значений y, z, … выбор игроком 1 значения х максимизирует X = F (x, y, z, …). При использовании дифференциального исчисления условие такой максимизации состоит в том, что производная от X по х при постоянном значении y, z, … (это частная производная) равна нулю. Для особых функций существуют простые формулы, подобные приведенной выше и использованной для квадратичной функции. И даже если алгебраические формулировки или исчисление слишком сложны, есть немало компьютерных программ, которые составят для вас таблицы или построят графики наилучших ответов. Какой бы метод вы ни применили, вы можете найти уравнение оптимального выбора игроком 1 значения x при заданных значениях y, z, …, описывающее функцию наилучшего ответа игрока 1. Аналогичным способом можно найти функции наилучших ответов всех остальных игроков.
Функции наилучших ответов соответствуют числу стратегий в игре и могут быть решены одновременно при условии, что стратегические переменные рассматриваются как неизвестные величины. Это решение и есть равновесие Нэша, которое мы ищем. В одних играх может быть множество решений, обеспечивающих множество равновесий Нэша, в других решение может отсутствовать, что требует дальнейшего анализа, например включения смешанных стратегий.