Но в жидком состоянии породы могут оказаться. Известно, например, что «кислые» породы плавятся при 1000°, «основные» — при 1000–1200°, «ультраосновные» — при 1300–1400°. Это значит, что уже на глубине 100–130 породы должны бы расплавиться. Но там очень высокое давление, а давление повышает температуру плавления. Чье же влияние окажется бóльшим: высокой температуры или высокого давления?
Здесь нужно снова обратиться к помощи сейсмических наблюдений. Продольные и поперечные волны свободно проходят через все оболочки Земли, заключенные между поверхностью Земли и границей ядра; следовательно, всюду здесь вещество ведет себя, как твердое. С таким выводом согласуется заключение астрономов и геофизиков, которые показали, что твердость Земли в целом близка к твердости стали. По вычислениям В. Ф. Бончковского, твердость Земли оценивается в 12 · 1011 дин на квадратный сантиметр, что в четыре раза больше твердости гранита.
Таким образом, совокупность современных данных говорит о том, что все оболочки Земли (кроме ее ядра!) должны считаться находящимися в твердом состоянии. Жидкое состояние материи можно допустить лишь для совершенно незначительных участков в толще земной коры, с которыми непосредственно связаны вулканы.
6. Движения земной коры
Всюду на поверхности Земли, в толще земной коры мы видим признаки и следы разнообразных и могучих движений, которые испытывало вещество земной коры. Эти движения, развиваясь медленно и постепенно, захватывают огромные толщи пород, распространяются на огромные территории и приводят к возникновению высоких горных цепей и глубоководных впадин, поднятий и опусканий, к возникновению бесчисленных складок и разрывов в пластах осадочных пород. Вся геологическая история есть история движений земной коры, движений крайне разнообразных по форме проявления, по ориентировке, по масштабу, но движений постоянных и повсеместных; достаточно ярким выражением таких движений могут служить современные горные цепи, представляющие нагромождение складок, созданных в прошлом и продолжающих формироваться и теперь.
Как же согласовать наше прежнее утверждение о твердости Земли с фактом подвижности земной коры, с наличием повсеместных, порою самых фантастичных по масштабу движений в толще Земли?
Движения в верхних частях коры связаны с движениями более глубоких частей коры и с движениями в веществе подкоровой оболочки. Подобные движения (они называются «тектоническими») захватывают толщу Земли на многие сотни километров вглубь и одним из доказательств их реальности служат глубокофокусные землетрясения, т. е. землетрясения с очагами, лежащими на глубинах порядка 300–600–700 километров.
Одной из отличительных черт тектонических движений служит их крайне малая скорость: 1 сантиметр в год — это для большинства мест уже много. Правда, геология располагает, как мы видели, такими запасами времени, что даже самые скромные по своему темпу движения успевают произвести грандиозный эффект.
Другим свойством тектонических движений служит их «дифференцированность», т. е. пестрота в их направлении и скорости. Именно эта дробность движений, разнообразие, различия в каждом данном пункте, приводят к чрезвычайному усложнению геологического строения. Любая геологическая карта складчатой области отражает на себе подобную «дифференцированность» тектонических движений.
Что же в конце концов получается: с одной стороны, вещество наружных оболочек — твердое, а с другой, — оно способно к перемещениям? Да, именно так, и противоречия тут нет.
Твердость, даже твердость тел кристаллического строения, отнюдь не исключает способности к перемещениям вещества внутри данного твердого тела. Кристаллы способны к деформациям без разрыва, к изгибам, измятиям, способны, в конце концов, течь — и все это в твердом состоянии, не меняя и не нарушая своей кристаллической природы, формы кристаллической решетки, даже ориентировки элементов этой решетки. Сущность этого процесса сводится к так называемым «пластическим» деформациям: в каждом кристалле можно найти такие плоскости, такие направления, смещение по которым не сопровождается разрушением кристалла, не ведет к разрыву, к появлению трещин. Можно сослаться на такие минералы, как гипс, каменная соль, слюда, турмалин, свинцовый блеск, кальцит, которые часто встречаются в изогнутом виде или с изогнутыми гранями или вообще деформированы, но, подчеркиваем, без трещин разрыва и без дробления.
Лабораторные исследования, а также наблюдения в поле показывают, что природа не знает здесь преград и как самые прочные, так и самые хрупкие кристаллы, такие, скажем, как кварц, не говоря уже о мягких, податливых минералах, дают отличные примеры пластических деформаций, порою выраженных чрезвычайно ярко (рис. 12). Можно сказать, что все кристаллы (тем самым и минералы, а следовательно, и горные породы) пластичны, т. е. обладают, в большей или меньшей степени, способностью к пластическим деформациям, и степень этой способности зависит не только от внутренних, присущих данному веществу, свойств, но и от внешних условий.