Выбрать главу

Причину того, что эффект интерференции обычно столь слаб и трудно обнаружим, можно найти в законах квантовой механики, которые им управляют. Существенны два частных вывода из этих законов. Во-первых, каждая субатомная частица имеет партнёров в других вселенных и интерферирует только с этими партнёрами. Любые другие частицы этих вселенных не оказывают на неё непосредственного воздействия. Следовательно, интерференцию можно наблюдать лишь в особых случаях, когда траектории частицы и её теневых партнёров расходятся и затем вновь сходятся (когда, например, фотон и теневой фотон стремятся к одной и той же точке на экране). Даже время должно быть правильным: если на одной из двух траекторий организовать задержку, интерференция ослабнет или прекратится. Во-вторых, для того, чтобы обнаружить интерференцию между любыми двумя вселенными, необходимо, чтобы произошло взаимодействие между всеми их частицами, положение и другие свойства которых не идентичны. На практике это означает, что интерференция будет достаточно сильна для того, чтобы её можно было обнаружить только между двумя очень похожими вселенными. Например, во всех описанных мною экспериментах интерферирующие вселенные отличаются положением только одного фотона. Если фотон при движении воздействует на другие частицы, и в особенности если мы наблюдаем его, то эти частицы или наблюдатель тоже станут различными в разных вселенных. Если это так, то последующую интерференцию с участием этого фотона на практике невозможно будет обнаружить, потому что требуемое взаимодействие между всеми частицами, которые подверглись влиянию, будет слишком сложно обеспечить. Здесь я должен упомянуть, что стандартная фраза, описывающая этот факт, а именно — «наблюдение разрушает интерференцию», — весьма обманчива, причём сразу в трёх отношениях. Во-первых, она предполагает некоторое психокинетическое влияние сознательного «наблюдателя» на фундаментальные физические явления, хотя такого влияния не существует. Во-вторых, интерференция не «разрушается»: её просто (гораздо!) сложнее увидеть, потому что для этого необходимо управлять точным поведением гораздо большего количества частиц. И, в-третьих, не только «наблюдение», но и любое воздействие фотона на его окружение, которое зависит от выбранной им траектории, приводит к тому же результату.

Ради блага читателей, которые могли видеть другие описания квантовой физики, я должен кратко показать связь между рассуждением, приведённым мной в этой главе, и обычным способом подачи этого предмета. Возможно, из-за споров, возникших среди физиков-теоретиков, традиционно отправной точкой является сама квантовая теория. Сначала теорию пытаются изложить как можно точнее, а уже затем — понять, что она говорит нам о реальности. Это единственный возможный подход, если нужно прийти к пониманию мельчайших деталей квантовых явлений. Но в отношении вопроса о том, состоит ли реальность из одной вселенной или из многих, этот подход излишне сложен. Именно поэтому в данной главе я ему не следовал. Я даже не сформулировал ни одного постулата квантовой теории, а просто описал некоторые физические явления и сделал неизбежные выводы. Но если начинать с теории, существует две вещи, которые никто не будет оспаривать. Первая заключается в том, что квантовая теория не имеет себе равных в способности предсказывать результаты экспериментов даже при слепом использовании её уравнений без особых размышлений об их значении. Вторая состоит в том, что квантовая теория рассказывает нам нечто новое и необычное о природе реальности. Спор заключается лишь в том, что именно.