Редукционисты уверены, что законы, управляющие взаимодействием дробноатомных частиц, имеют первостепенную важность, поскольку они являются основой иерархии всего знания. Но в реальной структуре научного знания и в структуре нашего знания в целом такие законы играют гораздо более скромную роль.
Какова же эта роль? Мне кажется, что ни одна из рассмотренных теорий, претендующих на звание "теории всего", не содержит много нового в способе объяснения. Возможно, самый передовой подход с объяснительной точки зрения -- это теория суперструн, в которой элементарными строительными блоками материи являются удлиненные объекты, "струны", а не точечные частицы. Но ни один существующий подход не предлагает нового способа объяснения -- нового в смысле объяснения Эйнштейном сил притяжения на основе искривленного пространства и времени. В действительности, ожидается, что "теория всего" унаследует практически всю объяснительную структуру существующих теорий электромагнетизма, ядерных сил и гравитации: их физические концепции, их язык, их математический формализм и форму их объяснений. Значит, мы можем рассчитывать, что эта структура основной физики, которая нам уже известна из существующих теорий, внесет вклад в наше общее понимание.
В физике существует две теории, значительно более глубокие, чем остальные. Первая -- это общая теория относительности, по-моему, наша лучшая теория пространства, времени и гравитации. Вторая -- еще более глубокая -квантовая теория. Эти две теории (а никакая другая существующая или ныне рассматриваемая теория дробноатомных частиц) предоставляют подробную объяснительную и формальную систему взглядов, в которой выражаются все остальные теории современной физики, и содержат основные физические принципы, которым подчиняются все остальные теории. Объединение общей теории относительности и квантовой теории -- с целью получения квантовой теории относительности -- стало в последние десятилетия основным предметом поисков физиков-теоретиков и должно было бы стать частью любой теории всего, как в узком, так и в широком смысле этого термина. Как мы увидим в следующей главе, квантовая теория, как и относительность, предоставляет революционно новый способ объяснения физической реальности. Причина, по которой квантовая теория глубже теории относительности, лежит большей частью не в физике, а вне ее, поскольку ее отрасли простираются далеко за пределы физики и даже за пределы самой науки в привычном ее понимании. Квантовая теория является одной из четырех основных нитей, образующих наше настоящее понимание структуры реальности.
Прежде чем назвать три других нити, я должен упомянуть еще один способ искаженного представления структуры научного знания редукционизмом. Редукционизм принимает не только то, что объяснение всегда состоит из разделения системы на более маленькие и простые системы, но и то, что все поздние события объясняются на основе ранних; другими словами, единственный способ что-то объяснить -- сформулировать причины этого. А это подразумевает, что, чем раньше произошли события, на основе которых мы что-то объясняем, тем лучше объяснение, так что, в конечном счете, все лучше объяснять на основе первоначального состояния Вселенной.
"Теория всего", исключающая определение первоначального состояния Вселенной, не является полным описанием физической реальности, потому что она содержит только законы движения; а законы движения сами по себе делают лишь условные предсказания. То есть они формулируют не то, что происходит, а только то, что произойдет в какое-то время, если известно, что это происходило раньше. Только если известно полное определение начального состояния, в принципе можно вывести полное описание физической реальности. Существующие космологические теории не обеспечивают полного определения начального состояния даже в принципе, но они утверждают, что изначально Вселенная была очень маленькой, очень горячей и имела однородную структуру. Но мы также знаем, что Вселенная не могла иметь абсолютно однородную структуру, потому что в соответствии с теорией это будет несовместимо с россыпью галактик, которые мы наблюдаем сегодня в небе. На первоначальные изменения плотности, "неоднородность распределения материи", значительное влияние оказало гравитационное сжатие (то есть относительно плотные участки притянули бы больше материи и стали бы более плотными), так что сначала эти изменения, должно быть, были совсем небольшими. Но какими бы маленькими они ни были, они имеют огромное значение для любых описаний реальности редукционистами, потому что почти все, что мы наблюдаем вокруг от россыпи звезд и галактик в небе до появления бронзовых статуй на планете Земля, с точки зрения основной физики является следствием этих изменений. Если наше редукционное описание стремится охватить нечто большее, чем самые крупные свойства наблюдаемой Вселенной, нам нужна теория, определяющая те важнейшие первоначальные отклонения от однородности.
Я попытаюсь заново сформулировать последнее требование, не принимая во внимание предубеждения редукционистов. Законы движения любой физической системы дают только условные предсказания и, следовательно, совместимы со многими возможными вариантами развития этой системы. (Это не зависит от ограничений предсказания, которые накладывает квантовая теория и о которых я расскажу в следующей главе). Например, законы движения, которым подчиняется ядро, выпущенное из пушки, совместимы с многими возможными траекториями, каждая из которых соответствует одному из возможных направлений и подъемов ствола пушки при выстреле (рис. 1.2).
Рис. 1.2. Некоторые возможные траектории движения пушечного ядра. Каждая траектория совместима с законами движения, но только одна из траекторий относится к конкретному случаю
Математически законы движения можно выразить системой уравнений, которые называют уравнениями движения. Существует много различных решений этих уравнений, каждое из которых описывает какую-то возможную траекторию. Чтобы определить, какое решение описывает действительную траекторию, необходимо обеспечить дополнительные данные - некоторую информацию о том, что происходит в действительности. Один из способов осуществить это заключается в определении начального состояния, в данном случае направления ствола пушки. Однако существуют и другие способы. Например, мы точно также могли бы определить конечное состояние -- положение и направление движения пушечного ядра в момент его приземления. Или мы могли бы определить положение самой высокой точки траектории. Мы можем давать любые дополнительные данные, если они помогают выбрать одно конкретное решение системы уравнений движения. Объединение любых дополнительных данных такого рода с законами движения равноценно теории, которая описывает все, что происходит с пушечным ядром с момента выстрела до удара.