After the crews don Nomex jumpsuits and select breathing gear-either a hose-fed compressed air mask from the Emergency Air Breathing (EAB) system or a walkaround breathing system called an Oxygen Breathing Apparatus (OBA), which uses a chemical cartridge to generate oxygen for the user-the drills begin. With all the burners lit, the temperature climbs rapidly toward the training maximum of 145degF/67degC, and there is a decided howl from the fire.
Training instructors are constantly supervising the trainees to make sure their equipment is functioning properly and they are breathing regularly, for above 130degF/58degC, the part of the brain that makes a human breathe automatically shuts down, forcing the trainees to breathe consciously on their own. In addition, the instructors add chemically generated smoke, which can reduce visibility down to about 6 inches. It is like something out of Dante's Inferno, and while it is exciting to watch, even the knowledge that it is a drill cannot prevent feelings of terror.
To fight the simulated fires, the trainees are equipped with a variety of fire extinguishers, fire hoses, and a new thermal imaging device called NIFTI (Navy Infrared Thermal Imager-pronounced "nifty"). This British-built device allows a sailor to "see" a fire through the smoke by the heat signature of the fire. So sensitive is the NIFTI that a human body can be located by looking for the heat of human metabolism. The fire extinguishers are designed to fight a variety of different fires. The new AFFF extinguishers, which throw a soapy slurry, are the most popular. Finally, there are a number of fire hoses that can be used to fight the simulated fires.
All in all, the Street Hall facility is a model of high-fidelity training, and similar facilities are being built at other naval bases around the United States.
All of these trainers are very expensive to build, operate, and maintain; in a time of declining funding, they are naturally the targets of those who would cut the defense budget. Nevertheless, I would contend that it is better to decommission an SSN or two rather than give up the valuable training that these facilities provide to the force. For while it is tough to get the money to operate and maintain an asset like a Los Angeles-class nuclear submarine, the sub is just a mass of metal without the men qualified to operate and fight her. The facilities at Groton and other bases are a tribute to the old saying that goes, "If you think training is expensive, try ignorance!"
The Boat: A Tour of USS Miami (SSN-755)
The Improved SSN-688 Design
Of all the nuclear submarines designed by the United States, none has been the subject of more political infighting and controversy than the Los Angeles (SSN-688) class. The design has its roots in a series of incidents that occurred in the late 1960s, right at the time the United States was trying to decide just what kind of nuclear attack submarine (SSN) to build to replace the highly successful Sturgeon-class boats. The infighting began with the desire of then-Director of Naval Reactors (DNR) Vice Admiral Hyman G. Rickover to build a high-speed (over 35 knots)[9] submarine capable of directly supporting the fleet of aircraft carriers that represented the backbone of American seapower.
The U.S. Navy organization charged with actually developing the specifications and design for the next generation of SSN, the Naval Sea Systems Command (Navsea), favored a design called Conform that would not be as fast as Rickover's design, but would have the advantage in areas such as habitability and quieting.
In the end, the decisive event that swung the situation in Rickover's favor was something known today as the Enterprise incident, which was a shock to the U.S. Navy and intelligence communities. In early 1969 the carrier USS Enterprise (CVN-65) and her escorts left their base in California for a war cruise to Vietnam. As she left harbor, U.S. national intelligence picked up message traffic indicating that the Soviet Union was going to dispatch a November-class SSN to intercept the carrier and her group. In an attempt to establish once and for all just how capable the first-generation Soviet SSNs were, the top battle group was provided with air cover from ASW aircraft and then told to outrun the November. It did not quite work out though, as the presumably slower Russian boat was able to match speed with the Enterprise. At 30 knots the game was called off. When word reached Washington, D.C., it caused rapid reassessment of just how capable the Russian SSNs really were.
Up until that point, it was assumed that the Novembers were only capable of speeds like those of the Nautilus and the Skates, around 20 knots. Yet here was one doing 50 percent better than that and not even trying! And what did this mean about the newer generation boats, such as the Victor I and II classes? In addition, there were mounting indications that the Soviets were working on a new class of deep-diving (over 2,000 feet/700 meters), extremely high speed (over 40 knots) SSNs.
In fact, the performance of the Novembers was due to the extreme lack of radiation shielding. Much like a hot rod that has been stripped of everything that weighs it down, the Russian boat simply did not have to haul around the reactor shielding that every other civilized nation considered essential to the good health and safety of their sailors. The November's superiority was based on a misinterpretation of the information, but there was no way to know that at the time. And Rickover was not a man to let slip an opportunity that would help justify his point of view. Through his network of Navy and congressional supporters, he pressured the Navy to kill Conform and build a class of his high-speed fleet boats. In the end he won authorization for a twelve-boat class of his fleet submarines, though to help gain critical budget authorization votes in Congress, he broke with the longstanding Navy tradition of naming submarines after sea creatures and instead named them for the home cities of the twelve congressmen who swung their votes in his favor. (Rickover is alleged to have said, "Fish don't vote!")
The first boat of the class, the Los Angeles (SSN-688), was to be the embodiment of his ideas of speed and power, but from the very start, it was a series of compromises. It is said that a camel is a horse designed by a committee, and the Los Angeles was no exception to that rule. The first problem had to do with fitting the massive S6G power plant into a hull with the dimensions needed to achieve the 35-knot speeds specified by Rickover. Quite simply, the reactor was going to come in 600 to 800 tons overweight. This meant that one or more of the key specifications of the boat-torpedo tubes/weapons load, habitability, radiated noise level, speed, sensors, or diving depth-was going to have to be reduced. The compromise was to thin the hull and limit the diving depth of the new boats to about three-fourths that of the Sturgeons and Permits (950 feet/300 meters). In addition there would be some severe compromises in habitability, forcing even more of the crew to hot bunk. As it was, there was very little reserve buoyancy (around 11 percent) and less growth potential than in any other SSN ever designed by the United States.
9
The description of the development of the Los Angeles-class boats is superbly told in the book