Выбрать главу

In the middle of the control room is a raised platform with the periscopes in the middle of it. The forward part is the watch station for the officer of the deck (OOD). Here he has full view of all of Miami's various status boards ahead of him, access to the periscopes behind, as well as fire control to his right and ship control to his left. These are the weapons control consoles for the BSY-1 combat system, which is the heart of the Miami's fighting power. The ship control area is in the forward corner on the port side.

Plotting table used aboard a Los Angeles-class submarine. Each boat has two of these tables in the control room. JOHN D. GRESHAM

The navigation and plotting areas are at the rear of the compartment. Down the port side of the control room are the various navigational systems, including the new Nav-star global positioning system (GPS) receiver. It is most noticeable by the gap that it sits in. Where before there was a rack of navigational equipment that took up 4 to 6 cubic feet of volume, the GPS system, which gives a three-dimensional navigational fix accurate to within 9 feet/3 meters, is a wonder taking up only about 60 cubic inches. It derives its accuracy from a series of twenty-four satellites operating in low earth orbit. The readouts show the exact latitude and longitude, as well as a number of different useful functions. So accurate is the GPS system that some U.S. Navy ship captains have been able to make blind approaches to piers in heavy fog using only GPS as a reference. The only limitation to GPS is that the Miami must raise a mast, such as the search periscope, to obtain a. fix. To make up for this, Miami also has a ship's inertial navigational system (SINS) that keeps constant track of the sub's position through an advanced three-dimensional gyroscope system that senses relative motion from a known starting point. Proper use of SINS with periodic GPS updates helps keep the Miami within a few hundred feet of its planned track at all times.

Periscopes in the control room, USS Miami. JOHN D. GRESHAM

The plotting area, aft of the periscopes, has a pair of automated plotting tables, though most of the movements are plotted by hand. Despite what one might think, most of the plotting of Miami's movements is done manually by a junior officer or enlisted man, on tracing paper over a standard navigational chart. Scattered throughout the passageways are a series of upright steel boxes secured to the bulkheads. They contain several complete sets of charts which cover the entire world, as well as detailed charts for specific areas to which the Miami might be tasked. In addition to the navigational instruments and plots, there are a number of instruments associated with the Miami's ability to work under the Arctic icepack. These include devices to obtain vertical traces of the bottom and ice floes, as well as various instruments to measure temperature and water depth.

The periscopes are mounted side by side, with the Type 2 attack scope to port and the Mk 18 search scope to the starboard. The Type 2 is a basic optical periscope with no advanced optics and only a simple daylight optical capability. The majority of the periscope work is done through the Type 18. It is the most advanced periscope currently fitted to a U.S. sub. In addition to its straight optical capability it has a low-light operating mode, which can be projected onto a number of television monitors around the boat. It is also equipped with a 70mm camera for taking periscope photos, as well as the readouts for the Electronic Support Measures (ESM) receiver mounted on top of the Type 18 mast. It also has an antenna for the GPS receiver mounted on it. This is a truly great scope, capable of almost any activity that might be asked of a periscope. The masts for the two scopes go up through the fairwater; they may be coated with a radar-absorbing material (known as RAM) to keep their radar signature down.

The ship control area, located in the forward portside corner, has three bucket seats-with seat belts-as well as room for another person to stand. Normally it is manned by two enlisted personnel who operate the diving planes and rudder (called the planesman and helmsman), and the diving officer and the chief of the watch controlling the ballast and trim. The planesman and helmsman are faced with aircraft-style control wheels, and sit facing a bank of control readouts and instruments. There is no view of the surrounding sea and even if there were, it would do little good. At depths over a few hundred feet very little light penetrates, and the sea becomes, as Jacques-Yves Cousteau calls it, "a dark and silent world."

A sailor operating the dive planes. To his right is the steering control station. JOHN D. GRESHAM
Ship control station of a Los Angeles-class submarine. The control wheels govern steering and diving. The center console telegraph orders the speed of the boat. JOHN D. GRESHAM
The helmsman, planesman, and diving officer man the ship control station of the USS Miami. JOHN D. GRESHAM

Just behind the ship control area stands the diving officer, who is actually ordering the planesman and helmsman what to do and when. To his left is the position where the COB may sit, though others will frequently draw duty there. This is where the controls for the multitude of valves, tanks, and other equipment required to dive and surface the boat are located. Each man controls either the rudder and bow planes, or the horizontal stabilizer. Two-man control has been a hallmark of U.S. design philosophy for generations, and Miami is no different. For every primary system there is a backup, usually with a manual operating mode. Most noticeable of these are a pair of mushroom-shaped handles located at the top of the ballast control panel. These are the manual valves to conduct what is known as an emergency blow. In the event the boat needed to get "on the roof" in a hurry, the person at the ballast control panel would activate these two handles. These valves, which require no power of any kind, send high-pressure air directly from the air banks into the ballast tanks-when that happens, you're headed up fast. Early American SSNs did not have this feature, and this lack was felt to be a contributing cause of the loss of the Thresher in 1963.

Diving the boat is not the crash dive of 1950s submarine movies. In fact, it is a carefully controlled and balanced procedure that resembles a ballet danced by an elephant. First, the captain orders any personnel down from the bridge, and the closing of all hatches. Once that is done, the diving officer looks over the status board to the left of the ship handling stations to verify that all hatches and vents are sealed, and that the air banks have an appropriate reserve of air pressure. This done, the diving officer opens the vents atop each ballast tank to allow a measured amount of water into the tanks. This is just enough to make the boat slightly heavier than the surrounding water (called negatively buoyant). As this is happening, the diving officer orders the planesmen to put 10 to 15 degrees of down angle on the boat, using the bow and stern diving planes. At this stage the boat begins to settle. All told, this process normally can take from five to eight minutes.

A Los Angeles-class nuclear submarine breaks the surface during an emergency blow drill. ELECTRIC BOAT DIV., GENERAL DYNAMICS CORP.