For the officers there is a separate wardroom for eating, studying, and doing paperwork. It is a nicely appointed area with its own pantry for coffee and snacks around the clock. In the middle of the space is a single table that serves as dining table, desk, and conference table. Unlike the commander of almost any other ship in the Navy, the commanding officer does not have a separate pantry to take his meals. He sits with his officers at every meal, giving it the feeling of a family gathering. The submarine service has always been more informal than the surface forces, and this is part of the esprit that makes the "bubbleheads" different from the rest. Commander Jones runs a "loose" wardroom where kidding and friendly ribbing is always welcome. He makes no secret of his love of good seafood, and is a big fan of ice cream. In fact, he is fond of saying that other than having the only private stateroom on the boat, his only command privilege on the Miami is choosing the flavor of ice cream for the machine in the galley. He chooses a rather diplomatic French vanilla flavor.
As for the commander's cabin, it is hardly the stuff you might find on the Queen Elizabeth II. Located just forward of the enlisted mess, on the second level, it is roughly 10 feet long by 8 feet wide. It is dominated by a combination desk/closet unit in the after portion of the cabin. Against the outside bulkhead is a pair of seats with a small table between them; this unit folds down into the bunk. Commander Jones is proud of saying that it's the best bunk on the boat, and certainly it is the only one that does not have another bunk above and/or below it! On the door to his cabin are three notices. One reads KNOCK AND ENTER and another is, THINK QUIET! IT'S OUR BUSINESS… IT COULD BE OUR LIVES. The final one is a copy of Rudyard Kipling's famous poem, "If," not a bad philosophy to advertise if you are in charge of 132 lives and $800 million of the taxpayers' money.
The commander's desk contains a variety of different manuals, a safe for classified documents, and various communications devices to keep him in touch with the rest of the boat. One of the newest pieces of equipment to be added is known as a multifunction display, mounted adjacent to his bunk. This marvelous device, which is tied into the BSY-1 combat system, is a red gas-plasma display showing data on position, course, speed, heading, and depth, as well as modes to show the current tactical situation around the boat. The advantage to Commander Jones is that he can wake for a moment in the middle of the night, reach over and check the boat's status, then roll over and go back to sleep-all without having to ruin his night vision by turning on a light or having to pick up a phone and talk to the OOD. He figures that not having to wake up fully several times is worth several hours' more sleep. And that can be life and death for the boat in a combat situation. A total of eight of these devices are located around the boat in such places as the control room and sonar room.
The Engine-The Reactor/Maneuvering Spaces
If you wander aft from the enlisted mess, past the forward escape trunk and down half a deck, you find the great divide on the Miami. This is the entrance to the tunnel aft to the propulsion spaces containing the S6G nuclear reactor (built by General Electric) and the main engineering spaces. It is marked by a number of different warning signs from the DNR, ranging from information on possible radiation hazards, to security notices about just who on the boat is allowed aft of this point. It should be noted that no member of the media, including myself, has ever actually seen an actual nuclear submarine reactor compartment or her engineering spaces. Nevertheless there are a number of things that we do know about these areas, and I will try to share them with you.
The first thing to understand about the nuclear reactor on a submarine is that it has only one real purpose, to generate heat to boil water into saturated steam. Other than that, all of the other parts of a nuclear submarine propulsion system are similar to any other type of steam-powered turbine plant. Its advantage over an oil-fired steam plant is the amount of energy concentrated in the nuclear fuel in the reactor core, as well as the complete lack of any need for air. On a weight and volume basis, nuclear fuel, such as enriched uranium, has several million times the amount of stored heat of a comparable amount of fuel oil. This concentration of energy is what makes all the dangers of handling nuclear fuel worth the trouble. In addition, because of the efficiency of the nuclear "fire," it is possible to build boiler plants that are considerably smaller than comparable oil-fired plants.
The process of nuclear fission is essentially quite simple. Imagine a floor covered with mousetraps. Each mousetrap has, mounted on the striker arm, two Ping-Pong balls. If we imagine a uranium atom as a mousetrap, it is holding on to a pair of attached particles called neutrons much like the Ping-Pong balls. Now if you drop another Ping-Pong ball onto one of the traps and trip it, two balls will fly into the air. This represents what happens when a neutron enters the uranium atom and strikes the nucleus: the atom splits and releases the two neutrons, releasing energy as heat. And when those two fall onto two more traps, these will trip and each throw two more Ping-Pong balls skyward. This will continue to double and double again until all the traps fire off their balls in one final fusillade. This same principle, whereby neutrons strike more and more atoms until all of them finally split, is called an uncontrolled or supercritical fission reaction. And this is what happens when an atomic bomb detonates.
But we don't desire an explosion, we want a slower reaction like a fire in a boiler. Imagine that in our room of mousetraps and Ping-Pong balls, we hang some monkeys from the ceiling. And we train them to grab one out of every two Ping-Pong balls when a trap goes off. This would allow the series of tripping traps to go on for a much longer time. And this is exactly what happens in a nuclear reactor. Instead of monkeys, a reactor uses what are called control rods (made of a neutron-absorbing material like cadmium or hafnium) set to absorb exactly the right amount of neutrons to bring the reaction into controlled or critical fission. This reaction still generates a great deal of heat, which is used to boil water into saturated steam to power the sub's turbines. In this way the same nuclear fuel that can cause a nuclear explosion in an instant can be used to power a ship for a period of years. And because of design procedures that have been tested over a period of decades, the fuel in the reactor cannot explode or even come close to doing so. The DNR takes great pride in the safety record of the boats with U.S.-designed reactor plants, which is perfect.
Most of the heat in the reactor is collected into what is known as the primary coolant loop. This is a series of pipes passing an extremely pure water-based coolant through the core of the reactor. This heat is passed through a heat exchanger to what is called the secondary loop. This is where the water for the steam turbine is actually boiled. Now, the steam created here is not the stuff you get from the tea kettle on your stove. This steam, which is under high pressure, is heated to literally hundreds of degrees and contains a great deal of motive energy. And this is the stuff that turns the turbine blades of the main engines, which feed into the reduction gears, which turn the propeller shaft and the propeller. Quite simple, really!