Выбрать главу

Предположим теперь, что сила, изменяющаяся по тому же закону, была бы направлена не к положению равновесия, а от него. Поведение системы в этом случае оказалось бы совершенно Другим. Отклонение массы от равновесия нарастало бы по экспоненте, масса разгонялась бы все быстрее в одном и том же направлении. С пружинами такое невозможно, а в других системах случается. Иногда система в одних условиях колеблется по синусоидальному закону, а в других срывается в экспоненциальный режим.

Умение находить с помощью математического анализа скрытые соотношения и симметрии, подобные, описанным выше, характеризует профессиональное мастерство физиков. Нередко более тонкие симметрии удается обнаружить, только коренным образом изменив математическое описание. Так произошло при переходе от птолемеевой космологии к ньютоновской механике, гораздо позднее – и с самой ньютоновской механикой.

В XIX в. законы Ньютона были математически полностью переформулированы французским физиком Жозефом Луи Лагранжем и ирландским физиком Уильямом Роуэном Гамильтоном. И тот и другой видоизменили математическое описание с тем, чтобы подчеркнуть простоту и изящество, заключенные в механике Ньютона. В работе Гамильтона, в частности, неожиданно оказался предвестник квантовой революции, которой предстояло опрокинуть всю классическую физику. Но до этого было еще далеко.

Основная проблема механики состоит в том, чтобы понять, описать и предсказать траектории (пути), по которым движутся материальные частицы под воздействием приложенных сил. Эти траектории, очевидно, имеют самый различный вид в зависимости от характера действующих сил. Задача о путях распространения в прозрачной среде световых лучей на первый взгляд кажется другой. Свет не подчиняется законам механики Ньютона, хотя хорошо известно, что при прохождении через среду с изменяющейся плотностью световые лучи искривляются. Например, нам кажется, что погруженная в пруд палка имеет излом в том месте, где входит в воду. Дело в том, что световые волны замедляются в плотных средах, и вторичные волны, исходящие из различных точек волнового фронта, встречая на своем пути участки среды с различной плотностью, образно говоря, “сбиваются с шага”: одни идут медленнее, другие быстрее. В большинстве случаев световой луч в конечном счете распространяется по пути, на котором от точки к точке затрачивается наименьшее время. Таким образом, поведение светового луча можно понять на основе теории волн, которые распространяются со скоростью, изменяющейся в зависимости от свойств среды, через которую они проходят.

Изменив математическую формулировку механики Ньютона, Гамильтон заметил, что наиболее сжатое выражение законов движения содержится в математическом соотношении, тождественном принципу минимального времени распространения световых волн. Грубо говоря, частицы стремятся переходить отточки к точке по наиболее легкому пути, т.е. с наименьшим сопротивлением, который в большинстве случаев оказывается и кратчайшим, т.е. требующим наименьших затрат времени. Тем самым было установлено, что материальные частицы и световые волны, несмотря на различие их характера и поведения, с математической точки зрения распространяются более или менее одинаковым образом.

Этот поразительный результат, полученный исключительно при попытке записать законы механики в новой математической форме, обнаруживает глубокую гармонию в природе, которая наводит на мысль, что в природе должны действовать и другие скрытые принципы. Взглянув ретроспективно, мы видим теперь, в чем состоят эти принципы. Тесная взаимосвязь между движением частиц и распространением световых волн указывает на то, что с материальными частицами могут связываться и некоторые волновые свойства. “Волны материи”, о которых мы упоминали в гл. 2 и 3, послужили отправным пунктом развития квантовой теории. Таким образом, математическая оптика Гамильтона, которая первоначально казалась лишь жонглированием математическими символами, предстает перед нами в новом свете – как провозвестник новой волновой теории материи.

Симметрия

Понятие симметрии хорошо знакомо и играет важную роль в повседневной жизни. Многим творениям человеческих рук умышленно придается симметричная форма как из эстетических, так и практических соображений. Мяч симметричен, так как выглядит одинаково, как бы его ни поворачивали вокруг центра. Круглая печная труба сохраняет свой внешний вид при более ограниченном наборе вращении – поворотах вокруг вертикальной оси, проходящей через центр поперечного сечения.

В природе симметрия также встречается в изобилии. Снежинка обладает удивительнейшей гексагональной симметрией. Кристаллы также имеют характерные геометрические формы – вспомним хотя бы кубическую форму кристаллов соли, отражающую регулярность атомной структуры. Падающая дождевая капля имеет форму идеальной сферы и, замерзая, превращается в ледяной шарик – градину.

Другой вид симметрии, часто наблюдаемый в природе и в созданных человеком вещах, – так называемая зеркальная симметрия. Человеческое тело обладает (приближенно) зеркальной симметрией относительно вертикальной оси. В зеркале правая и левая руки и другие части тела меняются местами, но видимое Вами зеркальное отражение узнаваемо. Многие архитектурные сооружения, например арки или соборы, обладают зеркальной симметрией.

Между геометрической симметрией и тем, что в физике принято называть законами сохранения, существует тесная связь. Законы сохранения говорят нам, что некоторые величины не изменяются со временем. В американском футболе число игроков на поле сохраняется. Игроки могут выходить на поле и уходить с поля, но общее число их остается постоянным. В физике существует закон, согласно которому в любой изолированной системе энергия, импульс и момент импульса должны сохраняться. Это отнюдь не означает, что изолированная система не может изменяться, – просто любое изменение, происходящее в системе, должно быть таким, чтобы три названные величины оставались постоянными. В бильярде, где из-за гладкой текстуры поверхности бильярдного стола шары приближенно можно считать механически изолированными, законы сохранения энергии и импульса определяют направления движения и скорости шаров.

Законы сохранения энергии, импульса и момента импульса вытекают непосредственно из законов движения Ньютона, но более поздняя формулировка этих законов, данная Лагранжем и Гамильтоном, позволила гораздо четче выявить их значение. Механика Лагранжа и Гамильтона обнажила глубокую и мощную связь между сохранением той или иной величины и, соответствующей симметрией рассматриваемой системы. Например, если система симметрична относительно вращении, то из уравнений Гамильтона и Лагранжа следует, что сохраняется момент импульса. Хорошей иллюстрацией сказанному может служить сила тяготения Солнца. Хотя сферическое Солнце вращается вокруг своего центра, это никак не сказывается на движении Земли по орбите. Гравитационное поле Солнца симметрично и поэтому не изменяется при простом вращении. Этой геометрической симметрии соответствует физический результат: момент импульса планеты, движущейся по орбите, всегда постоянен. (Этот факт был открыт еще в XVII в. Кеплером, который, однако, не оценил его истинный смысл.) Аналогичные соображения применимы к импульсу и энергии.

Симметрии, соответствующие вращению или отражению, наглядны и радуют глаз, но они не исчерпывают весь запас симметрий, существующих в природе. Исследуя математическое описание той или иной физической системы, физики открывают время от времени новые и неожиданные симметрии. Симметрии таинственно и тонко “запрятаны” в математическом аппарате и совсем не очевидны тому, кто наблюдает саму физическую систему. Манипулируя символами в уравнениях, физики пытаются раскрыть весь набор симметрий, в том числе и таких, которые не видны “невооруженным глазом”.

Классический пример такого рода, возникший на рубеже нашего столетия, относится к законам электромагнитного поля.

Несколькими десятилетиями раньше Майкл Фарадей и другие физики установили, что электричество и магнетизм тесно связаны между собой и что одно порождает другое. Действие электрических и магнитных сил удобнее всего было описать, пользуясь понятием поля — невидимого воздействия, создаваемого материей, простирающегося далеко в пространство и способного влиять на электрически заряженные частицы, электрические токи и магниты. Действие такого поля можно наблюдать, если попытаться сблизить два магнита: не соприкасаясь друг с другом, они будут отталкиваться или притягиваться.