Выбрать главу

Примечательно, что подобные эффекты можно действительно обнаружить. Рассмотрим, например, опыты с гироскопом на околоземной орбите. На движение гироскопа влияет искривление пространства, которое создается Землей и испытывает возмущение, обусловленное вращением. Таким образом, гироскоп будет прецессировать, и хотя эффект очень мал (потребовались бы миллионы лет, чтобы гироскоп совершил полный оборот), можно ожидать, что с помощью современных методов его удастся обнаружить. Например, поместив гироскоп в кожух для устранения возмущений негравитационного типа (в частности, воздействия солнечного ветра). Эксперимент такого типа планировался в течение нескольких лет профессором Уильямом Фейрбэнком в Станфордском университете (мы упоминали об этом ученом в гл.8 в связи с экспериментами по поиску свободных кварков).

У более массивных тел эффект, обусловленный вращением искривленного пространства, может быть более выраженным.

Предельный случай представляет вращение черной дыры, при котором наиболее близкие объекты могут оказаться столь вовлеченными в этот процесс, что никакая сила во Вселенной не в состоянии помешать этому. Подобный (предполагаемый) эффект в популярной литературе иногда называют пространственным вихрем вокруг черной дыры.

Вполне возможно, что принцип Маха не удастся проверить экспериментально. Как же можно узнать, что вращение Земли приводит к ее уширению в области экватора в совершенно пустой Вселенной, если у нас нет способа удалить из Вселенной остальные тела? Однако можно представить себе эксперимент, который мог бы дискредитировать этот принцип. Если бы на основании очень точных измерений удалось установить, что Вселенная в целом пребывает в абсолютном вращении, то принцип Маха был бы опровергнут.

Абсолютное космическое вращение означало бы существование преимущественного направления в пространстве, и можно ожидать, что это направление должно проявиться в распределении во Вселенной вещества и энергии. Известно, что космическое тепловое излучение однородно и изотропно по всем направлениям с точностью не менее 10-4 ; отсюда можно получить строгие ограничения возможности космического вращения. Действительно, можно показать, что за время своей истории Вселенная могла повернуться не более чем на несколько градусов. Таким образом, с большой степенью точности следует утверждать, что движение Вселенной по крайней мере не противоречит принципу Маха.

Сигналы из будущего

Подобно многим ученым-профессионалам, увлекающимся научной фантастикой, пару лет назад я взялся за чтение книги Грегори Бенфорда «Бегство времени». Каково же было мое удивление, когда почти в самом начале мне встретился персонаж по имени Пол Денис – физик, глубоко интересующийся проблемой времени и авторитетно утверждающий, что должна существовать возможность посылать сигналы в прошлое. Следуя его совету, герой книги, чтобы спасти мир от катастрофы, предпринял попытки связаться с ученым предшествующего поколения.

Неожиданное появление меня на страницах книги было вызвано, очевидно, моим давним и устойчивым интересом к проблеме происхождения времени. Впервые я увлекся идеей посылки сигнала в прошлое после посещения еще в студенческие годы лекции Фреда Хойла, которую он читал в Лондонском королевском обществе. Хойл указал, что знаменитые уравнения Максвелла для электромагнитного поля, описывающие распространение электромагнитных волн, допускают возможность распространения этих волн вспять во времени.

Этот поразительный вывод можно пояснить с помощью аналогии с обычными волнами на воде. Если бросить камень в спокойный пруд, то во все стороны от точки возмущения (падения камня) побегут волны, которые исчезнут на краях пруда. Подобную картину расходящихся волн нетрудно получить на практике. Вместе с тем мы никогда не встречаем упорядоченной картины, в которой волны, возникнув у краев пруда, сходились бы в одной точке. Однако физические процессы, управляющие волновым движением, полностью обратимы. Любую часть волны можно было бы заставить бежать в противоположном направлении. Несмотря на это, в природе спонтанно возникают лишь расходящиеся волны. Правда, сходящиеся волны можно создать искусственно – например, бросая кольцо горизонтально на поверхность пруда, но достичь такого результата значительно труднее. Почему?

Односторонняя направленность волнового возмущения характерна для всех видов волнового движения и как бы задает направление хода времени во Вселенной («стрела времени»), т.е. строгое различие между прошлым и будущим. Если снять распространение волн в пруду на кинопленку, а затем прокрутить фильм задом наперед, «обман» немедленно обнаружится. В случае электромагнитных волн, например радиоволн, картина упорядоченных волн, сходящихся в одну точку, выглядит вообще абсурдной. Поскольку радиоволны могут распространяться до границ Вселенной, единственный способ создать сходящиеся волны состоит в организации грандиозного космического «заговора», который заставил бы волны, приходящие со всех направлений бесконечного пространства, распространяться строго согласованно.

Вследствие связи характера волнового движения и направления хода времени расходящиеся волны можно рассматривать как движение в будущее обычным образом, а сходящиеся – как результат обращения времени, т.е. как движение в прошлое. Первый тип волн называется запаздывающим, поскольку волны возникают после того, как они испущены, а второй – опережающим, поскольку волны приходят раньше, чем были испущены. Еще со времен Максвелла считалось, что опережающие электромагнитные волны возможны, так как теория формально допускает их существование, однако физически они столь же нелепы, как, например, путешествие во времени, и потому их следует отбрасывать.

Большинство ученых с удовольствием отбрасывали опережающие волны как не имеющие отношения к действительности, не задумываясь над тем, почему Вселенная устроена таким образом, который повсеместно исключает этот тип волн. Иначе поступили Джон Уилер и Ричард Фейнман. В конце второй мировой войны они опубликовали любопытную статью, в которой пытались показать, почему запаздывающие электромагнитные волны являются нормой, а также исследовать вопрос о возможном существовании опережающих волн (волн из будущего). Позднее Уилер занялся ядерной физикой и вместе с Нильсом Бором и Энрико Ферми исследовал процесс деления урана; Фейнман в это время был еще студентом, но вскоре преуспел в разработке квантовой электродинамики, за что был удостоен Нобелевской премии.

Уилер и Фейнман решили исследовать, что происходило бы в мире, где запаздывающие и опережающие волны существуют на равных основаниях. В подобной гипотетической вселенной радиопередатчик посылал бы сигналы как в прошлое, так и в будущее. Можно было предполагать, что подобные обстоятельства обязательно приведут к бессмыслице, однако Уилер и Фейнман путем весьма интересного рассуждения показали, что это не обязательно так.

Проследим за судьбой доставляющих нам столько хлопот опережающих волн, которые из передатчика распространяются в пространстве вспять во времени. В конце концов эти волны где-то попадут в вещество, представляющее собой электрически заряженные частицы (например, в разреженный газ межгалактического пространства). Волны приведут частицы в движение, в результате будут испускаться вторичные волны той же самой частоты, причем одна половина волн будет запаздывающей, а другая – опережающей. Запаздывающие вторичные волны будут распространяться во времени в будущее, создавая в передатчике в момент излучения первичных волн небольшое эхо. Таким образом, мы получим разветвленную систему возмущений и сигналов – эхо, блуждающих во Вселенной в обоих направлениях во времени.