14. Существует ли "космический план"?
Как-то Стивен Вайнберг написал: «Чем понятнее кажется нам Вселенная, тем очевидней бесцельность ее существования». Вайнберг – один из ведущих физиков-теоретиков в мире, сделавший, вероятно, более чем кто-либо другой из физиков его поколения для объединения различных разделов физики. Один из авторов теории объединения электромагнитных и слабых взаимодействий, Вайнберг способен чрезвычайно квалифицированно оценить состояние дел в значительной части современной физики и космологии и сделать исходя из этого вполне обоснованные выводы. Его замечание по поводу Вселенной разделяют многие современные ученые, которые на основе своих исследований приходят к выводу об отсутствии какой-либо видимой цели существования Вселенной, что следует, таким, образом, рассматривать как грандиозное, но совершенно случайное событие.
Странно, однако, что другие ученые, основываясь на тех же принципах и экспериментальных данных, приходят к совершенно иным заключениям. Некоторые, подобно Эрвину Шрёдингеру, испытывают замешательство: «Я не знаю, откуда я пришел, куда иду и даже кто я такой». Эти ученые понимают, что природа слишком неуловима и сложна, и мы можем лишь вечно скользить поверх реальности, простирающейся над безграничной бездной истины. Мы можем надеяться лишь почувствовать проявление некоторых принципов, управляющих космосом, и изумиться их красоте. Наш кругозор слишком ограничен, чтобы проникнуть в суть столь глубоких проблем, как смысл и цель существования Вселенной.
Однако кое-кто из ученых придерживается более смелых и оптимистичных взглядов. Они также готовы признать, что наши знания о природе ограниченны и не вполне определенны, но твердо верят, что в конечном итоге нам удастся открыть действительно фундаментальные законы, управляющие Вселенной; Джон Уилер писал: «Однажды дверь, конечно, отворится и мы увидим сверкающий механизм нашего мира во всей его простоте и совершенстве».
Встречаются даже такие ученые, которые готовы предположить, что этот «сверкающий механизм» уже сейчас в наших руках. Вступая на пост руководителя люкасовской кафедры Кембриджского университета, которую некогда занимал Ньютон, Стивен Хокинг прочитал лекцию под названием: «Виден ли конец теоретической физики?» (Перевод этой лекции опубликован в журнале «Природа», № 5, 1382 ). В этой лекции Хокинг утверждает, что впервые за все время развития науки супергравитация дает возможность построить единую теорию природы, в которой все физические объекты и процессы описываются на основе одного математического принципа. Создание теории супергравитации явилось бы кульминацией развития физической науки. Такую теорию можно было бы считать не просто еще одним приближением на бесконечном пути к истине, а самой истиной. Мы могли бы быть убеждены в истинности этого самого последнего закона природы, как сегодня убеждены в правильности таблицы умножения.
Мало кто из физиков готов зайти столь далеко, но многие находятся под глубоким впечатлением замечательной гармонии, порядка и единства природы, которые открыли последние достижения науки. Сильное впечатление производит взаимосвязь законов природы друг с другом, вынуждающая поверить, что за всем этим что-то есть. Фред Хойл выразительно заметил: «Вселенная – это вызов всем нам».
Что приводит ученых к столь сильным выводам? В предшествующей главе были представлены доказательства всеобщего единства природы. Особенно убедительные свидетельства дает космология, само существование которой обусловлено возможностью говорить о «Вселенной» как о единой системе.
Однако экспериментальные данные говорят о большем. Каждое продвижение в фундаментальной физике, по-видимому, открывает еще одну сторону порядка. Сам успех научного метода определяется тем, что физическим миром управляют рациональные принципы, которые, следовательно, можно распознавать, разумно проводя исследования. Логически Вселенная совершенно «не обязана» вести себя подобным образом. Можно представить себе космос, в котором царит хаос. Тогда поведение вещества и энергии вместо упорядоченного и организованного было бы произвольным и случайным. Не существовали бы устойчивые структуры – такие, как атомы, люди, звезды. Однако реальный мир не таков – он упорядочен и сложен. Разве этот сам по себе удивительный факт не заслуживает восхищения?
Почему же тогда некоторые ученые, как и Вайнберг, приходят к выводу, что мир бесцелен, несмотря на всеобщий порядок, который демонстрируют законы природы. Полагаю, что отчасти это обусловлено неумением увидеть за деревьями лес. Профессиональный ученый настолько поглощен изучением законов природы, что порой забывает, сколь замечательно само их существование. Поскольку наука основана на существовании рациональных законов, ученый редко задумывается о том, почему эти законы существуют. Подобно тому, как любитель кроссвордов заранее уверен в существовании ответов на все вопросы, ученый редко сомневается в наличии рациональных ответов на поставленные им вопросы.
Подобный дух рационализма пронизывает все западное индустриальное общество. Даже люди, далекие от науки, без особых размышлений принимают на веру упорядоченность Вселенной. Они знают, что Солнце каждое утро восходит «по расписанию», что камень неизменно падает вниз, а не вверх, а все механизмы вокруг них будут работать как положено, пока не сломаются. Свойственная физическому миру рациональность, взаимозависимость и упорядоченность считаются само собой разумеющимися. Это настолько вошло в повседневную жизнь, что редко вызывает хотя бы слабое удивление.
Глубокое впечатление на физиков производит не только единство и упорядоченность природы, но и ее неожиданная гармония и согласованность. Традиционно физика делится на довольно самостоятельные разделы: механика, оптика, электромагнетизм, гравитация, термодинамика, атомная и ядерная физика, физика твердого тела и т.д. Это весьма искусственное деление скрывает, с какой четкостью эти разделы согласуются друг с другом. Красивый пример, близкий к области моих научных интересов, связан со вторым законом термодинамики. Этот закон был сформулирован в середине XIX в. для довольно ограниченного класса процессов, происходящих при работе тепловых двигателей. Однако вскоре стало очевидно, что применимость этого закона значительно шире, и сейчас он рассматривается как наиболее общий закон, который управляет всеми процессами в природе. Второй закон термодинамики упорядочивает обмен веществом и энергией, происходящий между физическими системами, в частности, строго запрещает многократно использовать для работы (например, для приведения в действие двигателя) одно и то же количество энергии.
Коротко говоря, второй закон термодинамики утверждает, что из беспорядка не может самопроизвольно возникнуть порядок. Точнее, этот закон как бы распоряжается тем «счетом» природы, величина которого измеряется энтропией – мерой беспорядка в физической системе. Когда речь идет о тепловых двигателях, энтропия характеризует наличие полезной энергии. В любом физическом процессе часть энергии ускользает из-под нашего контроля – рассеивается в окружающую среду. При этом упорядоченная энергия становится неупорядоченной и энтропия растет. Второй закон термодинамики запрещает уменьшение энтропии замкнутой системы. Даже самый эффективный двигатель не может вернуть теплоту, выделившуюся вследствие трения.
Можно было бы предположить, что среди столь разнообразных и сложных процессов природы (множество форм энергии и вещества, а также видов их активности) обнаружится хотя бы один случай нарушения закона. Однако этого не происходит. Какие бы новые виды вещества и взаимодействий ни обнаруживались, они неизменно подчиняются второму закону термодинамики.
Рассмотрим в качестве примера гравитацию. Эта область науки на первый взгляд не имеет прямого отношения к термодинамике. Тем не менее интересный мысленный эксперимент, предложенный Германом Бонди, показывает, что это не так. На рис. 29 изображен (я несколько видоизменил схему установки) тонкий стержень, изготовленный из жесткого оптического волокна. На каждом конце коромысла укреплены сферы, содержащие внутри по одному соответствующим образом подобранному атому; внешняя поверхность стержня посеребрена и непроницаема для света. Пусть первоначально возбужден атом в левой сфере. При этом он обладает большей энергией, чем такой же атом в правой сфере, а следовательно, и больше весит. Гравитация будет стремиться повернуть стержень так, что левая сфера пойдет вниз, а правая – вверх. Энергию этого движения можно использовать для запуска динамомашины, питающей двигатель. В конце концов стержень достигает предельного наклона, в наилучшем случае он займет вертикальное положение, причем возбужденный атом окажется внизу (рис. 29, б). В этот момент двигатель остановится.