В конечном итоге, возмущение мерности создаваемое проекцией третьего тела «накладывается» на возмущение мерности создаваемое проекцией четвёртого тела сущности. И оба эти возмущения мерности «накладываются» на деформацию пространства, создаваемую собственно физически плотной клеткой. При этом, возмущения мерности, создаваемые обеими проекциями, качественно отличаются друг от друга в силу того, что они создаются, как проекции разных тел клетки, имеющие разный качественный и количественный состав как между собой, так и по отношению к физически плотной клетке (см. Рис.176).
Давайте теперь разберём, что происходит на молекулярном уровне в клетке, когда на физически плотную клетку «накладывается» проекция третьего или четвёртого тел клетки. При таком «накладывании», рядом с деформациями микропространства, создаваемыми атомами, образующими молекулу ДНК или РНК, появляются дополнительные возмущения мерности, создаваемые проекцией, например, третьего тела клетки. В результате этого, качественное состояние микропространства вокруг этих и других молекул, образующих физически плотную клетку, изменяется (см. Рис.177).
Во внутриклеточном пространстве в состоянии хаотического (броуновского) движения постоянно находятся органические и неорганические молекулы, атомы и ионы. При своём движении они оказываются ближе или дальше от молекул ДНК или РНК. Между этими органическими и неорганическими молекулами, атомами и ионами, с одной стороны и молекулами ДНК или РНК, с другой стороны, в обычных условиях не возникает никаких элекронно-химических взаимодействий в силу того, что они имеют разные уровни собственной мерности и их электронные оболочки не в состоянии сомкнуться и образовать новое соединение [44].
Поэтому, появление дополнительного возмущения мерности микропространства, при наложении проекции третьего тела клетки, изменяет ситуацию. Причём, эти дополнительные возмущения мерности повторяют структуру третьего тела сущности и изменяют «рельеф» мерности внутриклеточного пространства, изменяя уровень мерности в тех объёмах микропространства, где данная проекция третьего или четвёртого тел клетки накладывается на уже существующий «рельеф» мерности клетки.
В результате, возникают условия, при которых возможны новые, дополнительные к уже существующим, электронно-химические связи между атомами молекул ДНК или РНК клетки и между «свободными» атомами, молекулами и ионами. Происходит наращивание «эволюционного мяса» на «скелет» молекул ДНК или РНК за счёт «добровольно» присоединённых внутриклеточных «обитателей».
Увеличивается молекулярный вес как молекул ДНК или РНК, так и других клеточных включений, с которыми происходят аналогичные процессы. Вновь «добровольно» присоединённые атомы к молекулам ДНК или РНК создают тождественные изменения и на уровне второго тела клетки (см. Рис.178).
Восходящие потоки первичных материй, точнее одна из них — первичная материя G, «протекая» через второе тело клетки, заполняет собой дополнительные деформации, созданные вновь присоединёнными к молекулам ДНК или РНК атомами и заполняет собой эти деформации. Заполнение новых деформаций на уровне второго тела клетки будет продолжаться до тех пор, пока уровень насыщения не достигнет максимума. В результате этого процесса плотность насыщения новых деформаций и второго тела клетки станут тождественны и они сольются в одно целое. Второе тело клетки станет тождественно физически плотному телу. «Эволюционное мясо» нарастёт и на втором теле клетки (см. Рис.179).
Второе тело клетки продолжает насыщаться восходящими потоками первичных материй. После завершения насыщения «вновь приобретённых территорий», восходящие потоки первичных материй продолжают интенсивно насыщать второе тело клетки. И это приводит к избыточному насыщению второго тела клетки, увеличению его собственного уровня мерности. Что, в свою очередь, приводит к появлению тождественных изменений на уровне третьего тела клетки. «Рельеф» мерности на уровне третьего тела изменяется, появляются деформации микропространства, тождественные деформациям других уровней (см. Рис.180).