Выбрать главу

образуется тогда, когда в горелке на один объем кислорода приходится один объем ацетилена. В нормальном пламени ярко выражены все три зоны. Ядро имеет резко очерченную форму, близкую к цилиндру, с ярко светящейся оболочкой. Температура ядра достигает 1000 °C.

В восстановительной зоне, содержащей продукты неполного сгорания ацетилена, проводят сварку. Температура этой зоны в точке, отстоящей на 36 мм от ядра, составляет 3150 °C. Факел имеет температуру 1200–2500 °C.

Нормальным сварочным пламенем осуществляют сварку сталей всех марок, меди, бронзы и алюминия.

получают при избытке кислорода, когда в горелку подают на один объем ацетилена более 1,3 объема кислорода. Ядро такого пламени имеет укороченную, конусообразную форму. Оно приобретает менее резкие очертания и более бледную окраску, чем у нормального пламени. Протяженность восстановительной зоны уменьшается по сравнению с нормальным пламенем. Факел имеет синевато-фиолетовую окраску. Горение сопровождается шумом, уровень которого зависит от давления кислорода. Температура окислительного пламени выше, чем у нормального, однако при сварке таким пламенем из-за избытка кислорода образуются пористые и хрупкие швы.

Окислительное пламя применяют при сварке латуни и пайке твердыми припоями.

получают при избытке ацетилена, когда в горелке на один объем ацетилена приходится не более 0,95 объема кислорода. Ядро такого пламени теряет резкость очертаний, на его конце появляется зеленый венчик, по наличию которого судят об избытке ацетилена. Восстановительная зона существенно светлее, чем у нормального пламени, и почти сливается с ядром. Факел приобретает желтую окраску. При значительном избытке ацетилена пламя коптит. Температура науглероживающего пламени ниже, чем у нормального и окислительного.

Слегка науглероживающим пламенем сваривают чугун и осуществляют наплавку твердых сплавов.

Регулируют и устанавливают вид сварочного пламени «на глаз».

При выполнении сварочных работ необходимо, чтобы сварочное пламя обладало тепловой мощностью, достаточной для расплавления свариваемого металла. Ее выбирают в соответствии с толщиной свариваемого металла и его теплофизическими свойствами. Эта мощность зависит от расхода ацетилена – объема газа, проходящего за один час через горелку, поэтому ее регулируют ацетиленовым вентилем и подбором наконечника горелки.

Расход ацетилена (его измеряют в дм/ч), необходимый для расплавления слоя свариваемого металла толщиной 1 мм, устанавливают на практике. Так, слой низкоуглеродистой стали толщиной 1 мм расплавляется при расходе ацетилена 100–130 дм3/ч. Чтобы определить расход ацетилена при сварке конкретной детали, нужно умножить расход, соответствующий единичной толщине, на действительную толщину свариваемого металла (мм).

При сварке низкоуглеродистой стали толщиной 3 мм минимальный расход ацетилена составит 100 ∙ 3 = 300, а максимальный – 130 ∙ 3 = 390 дм3/ч.

Решающую роль в процессе горения играет кислород. Для полного сгорания одного объема ацетилена требуется два с половиной объема кислорода. Однако при газовой сварке недопустимо смешивать ацетилен с кислородом в такой пропорции, чтобы обеспечить полное сгорание ацетилена. Как правило, на один объем ацетилена подают 1,1–1,2 объема кислорода.

Для предотвращения окислительных процессов при газовой сварке в присадочные материалы и флюсы вводят вещества, которые раскисляют металл[11], например кремний и марганец, которые имеют большее сродство к кислороду, чем металл шва. При сварке стали раскисляющее действие оказывают углерод, его оксид и водород, образующиеся при горении газовой смеси. Поэтому углеродистые стали можно сваривать и без флюса. Соответствующие присадочные материалы и флюсы применяют и для легирования металла шва.

При газовой сварке основной металл, примыкающий к сварному шву, подвергается нагреву до температуры 1500 °C. Область, нагретую до 450—1500 °C, принято называть зоной термического влияния. Общая протяженность околошовной зоны при газовой сварке, зависящая от толщины и марки стали, составляет 6—30 мм. Эта область склонна к образованию холодных и горячих трещин.

Для предупреждения образования холодных трещин рекомендуется применять сварочные материалы с минимальным содержанием фосфора и проводить сварку на оптимальных режимах.

Для предотвращения образования горячих трещин необходимо применять сварочные материалы с повышенным содержанием марганца и минимальным количеством серы и углерода, вводить в металл шва легирующие элементы (титан, алюминий, медь), выполнять сварку с предварительным подогревом и последующей термообработкой.

Кроме того, для улучшения структуры и свойств зоны термического влияния и металла шва, выполненного газовой сваркой, осуществляют горячую проковку[12] шва, его термообработку (нагрев сварочной горелкой) и общую термообработку сварного изделия (нагрев в печах с последующим медленным охлаждением).

Под техникой сварки понимают приемы манипулирования электродом или горелкой, выбор режимов сварки, приспособлений и способы их применения для получения качественного шва. Однако качество швов зависит не только от техники сварки, но и от других факторов, таких как состав и качество применяемых сварочных материалов, состояние свариваемой поверхности, качество подготовки и сборки кромок под сварку.

Подготовительные слесарные операции

Благодаря доступности электроинструментов в наше время работы по раскрою и подготовке металла к сварке значительно упростились. Фактически с помощью одной только углошлифовальной машинки в большинстве случаев можно быстро раскроить материал, опилить фаски, а затем и зачистить сварные швы. Но болгарка выручает не всегда. Для работы в узких местах, при сложной конфигурации исходного материала, его малых размерах и т. п. она неудобна. Например, прорезать болгаркой небольшое окно в металлическом листе, не захватывая лишний материал, не получится. Тонкий металл из-за высокой скорости вращения отрезного или шлифовального диска очень легко пережечь. К тому же ограничиться раскроем и зачисткой удается не всегда. И тут на помощь приходят старые добрые ручные инструменты.

Рубка металла

Операция по разделению на части или по удалению излишних слоев металла называется . При помощи рубки удаляют наплывы, снимают кромки, заусенцы, твердую корку, делят заготовки на части, делают отверстия, пазы, канавки, углубления, разделывают трещины под сварку и т. п. Точность обработки при рубке составляет 0,5–0,7 мм.

Линии разметки под рубку лучше наносить керном в виде пунктира. При разметке кромок под сварку удобно наносить две риски в виде параллельных линий: внутренняя показывает верхнее ребро фаски, а внешняя – нижнее ребро фаски.

Режущим инструментом при ручной рубке являются зубило и крейцмейсель[13], ударным – слесарный молоток. Угол заострения лезвия зубила или крейцмейселя в зависимости от твердости обрабатываемого материала должен составлять: для чугуна, бронзы и твердой стали – 70°, стали средней твердости – 60°, меди, латуни, алюминиевых и драгоценных сплавов – 45° и менее.

Слесарные молотки бывают с круглым и квадратным бойком. Сила удара молотка по зубилу зависит от веса молотка, величины размаха и скорости движения руки. Тяжелый молоток увеличивает силу удара, но в то же время делает работу более утомительной. Рекомендуемая масса молотка – от 600 до 800 г.

вернуться

11

Раскисление – процесс удаления кислорода из сварочной ванны, одна из основных операций рафинирования металлов (рафинирование – процесс очистки металлов от примесей).

вернуться

12

Проковка – механическое воздействие молотком или кувалдой на металл шва как в горячем, так и в холодном состояниях. Проковка улучшает механические свойства наплавленного металла и в значительной степени уменьшает усадку.

вернуться

13

Крейцмейселем называют зубило, имеющее зауженную режущую кромку. Этот инструмент предназначен для прорубки шпоночных пазов, узких канавок и углублений.