На основе аналитических уравнений была разработана установка для передачи состояния от одной частицы запутанной пары к другой. Передаваемое состояние является произвольным и может быть неизвестно передающей стороне. Но проблема не в этом: даже зная состояние передаваемой частицы, мы не можем мгновенно узнать состояние частицы, переданное удаленной стороне. Это возможно лишь с использованием дополнительной, классической информации. Иначе говоря, считается строго доказанным, что сверхсветовая передача классической информации посредством квантовой телепортации невозможна. Главным аналитическим критерием в этом вопросе стали так называемые неравенства Белла, утверждающие, что никакие вероятностные корреляции невозможны без сверхсветовой передачи информации.
Собственно, понятие "неравенства Белла" породила статья Д.Белла "Парадокс Эйнштейна Подольского Розена" была опубликована в 1964 году, В ней Белл произвёл тщательный анализ доводов Эйнштейна, Подольского и Розена. Он убедительно показал, что теории со скрытыми переменными в принципе не позволяют объяснить результаты, полученные в реальных экспериментах. Белл пришёл к выводу:
"В квантовой теории с дополнительными параметрами для того, чтобы определить результаты индивидуальных измерений без того, чтобы изменить статистические предсказания, должен быть механизм, посредством которого настройка одного измеряющего устройства может влиять на чтение другого отдаленного инструмента. Кроме того, задействованный сигнал должен распространяться мгновенно …" [1].
Другими словами, если мы с позиции теории с дополнительными параметрами будем утверждать, что результаты измерений над каждой частицей полностью независимы друг от друга, независимы в физическом смысле, а все совпадения являются статистическими следствиями, то есть, по существу, они всего лишь случайные совпадения, то в этом случае мы будем вынуждены переложить весь груз этой случайности на некий механизм, упомянутый Беллом. Этот механизм должен обладать способностью подстраиваться под измерения со сверхсветовой скоростью. Следовательно, такая теория опять-таки противоречит специальной теории относительности и поэтому тоже отвергает ЭПР-аргументы.
Еще один запрет на сверхсветовую передачу классической информации накладывает теорема о запрете клонирования кубита. Клонирование могло бы позволить многократными измерениями клонов определить состояние телепортированного кубита.
Вместе с тем, вопрос о непосредственной передаче информации как таковой является до сих пор дискуссионным. В одной из работ этот вопрос формулируется в явном виде:
"Подразумевает ли передача нелокальной информации автоматически сверхсветовую сигнализацию?" [2, гл.1.1]
Здесь, как видим, фактически между квантовой (нелокальной) и классической информацией не проводится явной границы. Констатируется, что сама по себе передача сверхсветовой информации не приводит к возникновению парадоксов причинности, если эта информация недоступна. Квантовая информация, по крайней мере, в настоящее время таковой и является. Отсюда возникает интересная интерпретация нелокальной информации, как одной и той же информации одновременно присутствующей в двух разных областях пространства. Эта информация как бы объединяет эти области, она становится "пространственно расширенной" [2, гл.6.3].
Несмотря на все эти доводы, аргументы можно провести фундаментальную параллель между квантовой и классической информацией. Хотя носитель квантовой информации в явном виде, в эксперименте не зарегистрирован, есть гипотетическая возможность использования квантовой информации для сверхсветовой передачи информации классической.
Создание запутанных состояний гейтом
CNOT
Помимо косвенной сверхсветовой сигнализации посредством телепортации состояния запутанности можно рассмотреть еще один гипотетический способ непосредственной сверхсветовой коммуникации. С этой целью удобно использовать квантовые гейты CNOT, которые позволяют получить состояние запутанности вместо параметрического распада. Математическое описание этого процесса достаточно наглядно. Схема гейта CNOT представлена на рис.1a – изображение, чаще всего используемое в литературе, на рис.1б – изображение гейта, использованного в схеме традиционной квантовой телепортации (перевернуто).