Выбрать главу

Пропустим кубит C Алисы через гейт Адамара. В результате получаем новую функцию системы

Раскрываем скобки у правых сомножителей

Раскрываем оставшиеся скобки и собираем однотипные члены уравнения

После группировки и сокращения получаем

Здесь мы в рамках формализма квантовой информатики выполнили хотя и очевидные, но не вполне обоснованные математические операции: совпадающие члены уравнения мы сложили, а члены, имеющие противоположные знаки, сократили. Иначе запись должна была иметь вид:

Но после сокращения получаем выражение

Заметим, что полученная волновая функции выглядит на первый взгляд довольно странно:

Это состояние не является запутанным, но любое совместное измерение всегда даст нулевую (горизонтальную) поляризацию фотона C. Казалось бы, фотоны независимы, поэтому любому результату измерения A должен соответствовать такой же любой результат измерения C. Но причиной образования состояния (2) является действие гейта Адамара: фотон C в результате попросту перешёл в пределах системы в ортогональное состояние |0С.

Пропустим полученную пару (2) через гейт CNOT. Для удобства перепишем новое состояние в матричном виде:

После прохождения фотонов Алисы через гейт CNOT состояние в матричном виде будет иметь вид:

В дираковской форме волновая функция теперь уже не может быть представлена как тензорное произведение двух независимых волновых функций фотонов A и C, что означает запутанное состояние этих фотонов (чистое состояние Белла ϕ+, состояние шрёдингеровского кота):

Для контроля проделаем все эти же преобразования в дираковской форме. Используем выражение (2):

Пропустим эту пару через гейт CNOT и сразу же в соответствие с таблицей состояний гейта CNOT получаем то же самое новое состояние системы:

Итак, двумя способами мы получили один и тот же результат: на стороне Алисы фотоны A и C перешли в запутанное состояние. Однако каждый из этих фотонов запутан также и со своей исходной парой, поэтому вследствие унитарности проведенных преобразований неизбежно запутанными оказываются и фотоны, переданные Бобу:

Если Алиса не делает над своими фотонами никаких измерений, то состояние запутанности сохранится и на стороне Боба. Это означает, что фотонам Боба передано запутанное состояние. В этом случае все измерения у Боба фотонов D и B будут давать 100% парных прохождений при любой ориентации поляризаторов.

Если же Алиса произведёт измерение над любым из своих фотонов, то её фотоны перейдут в собственные состояния с разрушением запутанности, и точно так же запутанность разрушится и на стороне Боба. Теперь на стороне Боба при любом положении поляризаторов парных прохождений будет только 50%. Таким образом, Боб мгновенно узнает, что Алиса произвела измерение своих фотонов.

Конечно, можно предположить, что на стороне Боба запутанность может иметь иной вид, поскольку на стороне Алисы фотоны были пропущены через гейт CNOT:

Однако это ничего не меняет по существу. Просто в этом случае парных прохождений не будет вообще, поэтому по-прежнему сохраняется возможность определить изменение состояний фотонов на стороне Алисы. Теперь уже возникает обратный эффект: при отсутствии измерений у Алисы на стороне Боба будут только равновероятные измерения |01 и |10. Напротив, при наличии измерений у Алисы на стороне Боба будут наблюдаться также и парные прохождения |00 и |11.

Поскольку изменение состояния запутанности на пространственноподобном удалении является физически детектируемым, то это означает мгновенную, нелокальную, сверхсветовую передачу классической информации.

Квантовый семафор

Считается, что главной проблемой при использовании запутанности для передачи информации считается невозможность регистрации фактического состояния квантовых частиц и, как следствие, невозможность различения их неизвестных состояний. Еще одно ограничение на такое различение создаёт запрет на клонирование квантовых частиц: наличие копий частиц давало бы возможность множеством измерений определить их состояние, то есть, выявить различие между частицами, передаваемыми от передатчика к приёмнику.