Выбрать главу

Применение приемников излучения, действие которых основано на явлении фотоэффекта (фотоэлементов), позволило провести многочисленные измерения освещенности в различных районах Мирового океана.

Принцип действия практически всех современных подводных, фотометров базируется на использовании закона, открытого Столетовым, о том, что величина тока, вырабатываемого фотоэлементом, прямо пропорциональна падающему на него световому потоку. Поэтому, регистрируя значения фототока на различных глубинах, мы можем определить освещенность на интересующем нас горизонте. Естественно, что каждый гидрофотометр проходит предварительную градуировку на фотометрической скамье, где определяется, какой отсчет регистрирующего прибора соответствует тому или иному значению освещенности.

В качестве датчика в гидрофотометрах чаще всего применяют селеновый фотоэлемент с запирающим слоем.

На рис. 36 в схематическом виде изображено устройство такого фотоэлемента. На железную пластинку 1 нанесен слой селена 2, на который напыляется очень тонкая (тысячные доли микрона) золотая или платиновая полупрозрачная пленка 4. В процессе обработки фотоэлемента на поверхности селена образуется тонкий запирающий слой 3. На полупрозрачную золотую пленку накладывается контактное кольцо 5. Вторым электродом является железная пластинка. Весь фотоэлемент помещается в изолирующий пластмассовый корпус 6.

Кроме простоты устройства селеновый фотоэлемент обладает еще одним немаловажным достоинством: его спектральная чувствительность близка к чувствительности человеческого глаза. Из всех известных в настоящее время фотоэлементов селеновый легче всего откорректировать с помощью светофильтров, так чтобы его чувствительность соответствовала кривой видности глаза (рис. 37).

Для измерений в море фотоэлемент помещается в герметический корпус, иллюминатор которого делается из толстого молочного стекла и имеет выпуклую форму. Нужно это для того, чтобы на поверхности фотоэлемента собирался весь свет, рассеянный в верхней (или в нижней, если иллюминатор направлен вниз) полусфере, а не только лучи, отвесно падающие на приемник излучения.

Внешний вид одного из первых промышленных образцов измерителя подводной освещенности (ФМПО-57) показан на рис. 38. Прибор имеет вид люстры, у которой четыре иллюминатора направлены вверх и один — вниз. В трех из пяти корпусов датчиков прибора перед селеновым фотоэлементом помещены светофильтры: красный, синий и зеленый. Это позволяет не только измерять общий световой поток, но и выделять его спектральные составляющие. Для того чтобы в результате измерений можно было определить интенсивность излучения, идущего из глубин моря к его поверхности, пятый фотоэлемент помещен в корпус, иллюминатор которого обращен вниз.

Рис. 36. Схема устройства селенового фотоэлемента

1 — железная пластинка; 2 — слой селена; 3 — запирающий слой; 4 — золотая или платиновая пленка; 5 — контактное кольцо; 6 — пластмассовый корпус

Рис. 37. Спектральные характеристики селенового фотоэлемента без коррекции 1, с корректирующим светофильтром 2 и спектральная чувствительность глаза 3

Рис. 38. Внешний вид измерителя подводной освещенности ФМПО-57

Рис. 39. Комплект прибора ФМПО-64

Прибор ФМПО-57 на тросе океанологической лебедки погружается в море до глубины 100–150 м. Фототок, вырабатываемый селенами под действием света, передается по кабелю на борт судна, где и регистрируется микроамперметром.

При всей простоте конструкции у этого прибора было много недостатков. Дело в том, что освещенность в море меняется в очень широких пределах: от десятков тысяч люксов у поверхности до единиц на глубине около 100 м. А селеновые фотоэлементы очень не любят больших засветок, так как при этом их фототок перестает быть прямо пропорциональным интенсивности света. Другими словами, прибор типа ФМПО-57 начинал работать с достаточной точностью только тогда, когда его погружали на глубину в несколько десятков метров, где освещенность не превышала 100–200 лк. Кроме того, для изучения способности морской воды пропускать свет с различными длинами волн трехцветных светофильтров было явно мало.

Группа конструкторов Загорского оптико-механического завода (под руководством Н. Ф. Шипули и В. И. Рябинина) и инженер лаборатории гидрооптики Института океанологии А. К. Карелин создали хотя и несколько сложный конструктивно, но более совершенный прибор для измерения освещенности в море ФМПО-60 и ряд его последующих модификаций (ФМПО-64 и ЛЮПО).