Эта формула имеет вид:
где zчд — глубина исчезновения черного диска (м); ε — показатель ослабления направленного излучения (м-1); П — порог контрастной чувствительности глаза.
Если величину П принять равной 0,02, то
Такой метод определения показателя ослабления называют методом черного экрана.
Изучение видимости под водой представляет собой один из интереснейших и практически важных вопросов оптики моря.
Оптика моря и подводная съемка
Фотокамера опускается на дно
В 1893 г. в заливе Баньюль-сюр-Мэр на Средиземном море французскому ученому Луи Бутану удалось получить первые подводные фотоснимки. Специально для съемки под водой он сконструировал фотокамеру — громоздкое сооружение, погружавшееся на морское дно и управлявшееся водолазом (рис. 55).
В то время снимки делались на неудобных мокроколлодийных пластинках; не было ни легких фотокамер, ни достаточно сильных малогабаритных источников света. Поэтому после Луи Бутана предпринимались лишь единичные попытки фотосъемки под водой, а написанная им в 1900 г. книга «La Photographie sous Marine» («Подводная фотография») оставалась мало известной широкому кругу читателей.
Массовое увлечение подводной фотографией началось лишь в 30-х годах, когда появились малоформатные фотоаппараты, работающие на кинопленке. Для съемок на мелководье используется обычный фотоаппарат, заключенный в водонепроницаемый корпус с выведенными наружу через сальники ручками управления. Фотографирование на больших глубинах, куда человек не может проникнуть даже в глубоководном скафандре, осуществляется с помощью автоматических фотокамер.
Хотя конструкцию подобной камеры Луи Бутан разработал еще в 1899 г., технические возможности того времени не позволили ему использовать изобретение на практике.
Лишь в 1940 г. американцам Юингу, Вайну и Ворзелю удалось получить первые удачные фотографии морского дна на большой глубине. Во время войны их фотокамера успешно использовалась для поисков затонувших судов. В послевоенные годы метод подводного фотографирования начал широко применяться для геологического и биологического изучения морского дна. Это дает возможность ученым детально рассмотреть микрорельеф поверхности дна, выяснить характер слагающих его осадков, обнаружить выходы коренных пород. Следы ряби на морском дне, запечатленные на фотографии, служат доказательством наличия придонных течений. Морские «зверюшки», попавшие в поле зрения объектива, позволяют биологам судить о качественном и количественном составе донной фауны и условиях ее обитания. Фото- и киносъемка являются, пожалуй, единственным средством для изучения следов жизнедеятельности донных животных, не сохраняющихся обычно в дночерпательных и траловых пробах.
Рис. 55. Первые подводные фотосъемки
Быстро вырос мировой рекорд глубины погружения подводной фотокамеры. В 1951 г. американский ученый Давид Оуэн получил фотографию дна океана с глубины 5500 м. Его соотечественнику Гарольду Эджертону в 1959 г. удалось сфотографировать морское дно на глубине 8500 м. Советский исследователь Н. Л. Зенкевич, опустив фотокамеру на дно желоба Кермадек в Тихом океане глубиной 9960 м, получил лишь неясные фотографии мути, так как дно желоба было целиком покрыто жидким илом, в который, по-видимому, полностью погрузилась фотокамера. Удачные фотографии океанского дна Зенкевич получил в Тихом океане на глубинах до 6150 м. Им была сконструирована и изготовлена двухобъективная подводная фотокамера для стереоскопической съемки морского дна. Помимо объемности изображения стереофотографии дают возможность увидеть гораздо больше деталей, нежели обычные фотоснимки. На рис. 56 показано скалистое дно, почти лишенное осадочного покрова. Лишь в небольших углублениях видны скопления белого глобигеринового песка. На поверхности дна лежит несколько крупных офиур. Обычные приборы для взятия проб грунта с такого дна приходят, как правило, пустыми.
Стереоскопические фотоустановки конструкции Зенкевича, успешно использовавшиеся в экспедициях Института океанологии, дали весьма ценный материал морским геологам и биологам.
Рис. 56. Фотография океанского дна на глубине 1335 м (снимок сделан в рейсе «Витязя» в 1957 г.)
Рис. 57. Преломление световых лучей при переходе через поверхность заметно искажает пропорции подводных объектов