Выбрать главу

И вот прошло четыре года. В мае 1968 г. гидрооптики, члены Рабочей группы, встретились в Сан-Диего (США), чтобы сопоставить различные приборы для измерения фотосинтетически активной радиации (ФАР) в море. Одновременно австралийский гидробиолог Джиттс измерял первичную продукцию, использовав палубный инкубатор своей конструкции.

Испытания проводились в Калифорнийском заливе; штилевая погода, отсутствие облачности и большие высоты Солнца создавали хорошие условия для работы.

Измерения велись различными по конструкции и принципу действия приборами.

Американские ученые Тайлер и Смит измеряли и спектральное распределение энергии на различных глубинах с помощью погружаемого в море спектрорадиометра. Этот прибор позволял получать спектральные кривые большой точности, так как его разрешающая способность была всего 5 ям. Аналогичный прибор использовали и французские гидрооптики Иванов и Боэр. Кроме того, они испытали подводный пиранометр повышенной чувствительности и измеритель облученности в узком участке спектра. Советские специалисты Очаковский и Сусляев использовали подводный пиранометр, измеритель облученности в узком участке спектра и прибор ВАРИПО.

Особый интерес вызвал измеритель Ерлова, названный им квантометром. Приемником здесь служит селеновый фотоэлемент, различные участки поверхности которого перекрыты разными цветными светофильтрами. Такая конструкция, по мнению Ерлова, делает приемник излучения неселективным в диапазоне ФАР. К сожалению Ерлов не смог принять участие в испытаниях, и с этим прибором работали его коллеги К. Ньюгард и Г. Кулленберг.

Сейчас, когда полученные материалы еще находятся в стадии обработки, трудно судить о достигнутых результатах. Но очевидно, что это только один из первых шагов в поисках оптимального варианта прибора для световых измерений, которые так необходимы морским биологам.

Интересную аппаратуру для изучения фотосинтетически активной радиации сконструировал польский ученый Ежи Дера. Его установка, плавая в виде поплавка, суммирует количество энергии, падающей на поверхность моря в течение всего дня.

Надо помнить, что проблема «свет и фотосинтез» остается одной из важнейших проблем как оптики моря, так и морокой биологии. Океан — продовольственная кладовая будущего, и ее изобилие в первую очередь определяется первичной продукцией.

Недавно советские ученые О. И. Кобленц-Мишке, В. В. Волковинский и Ю. Г. Кабанова примерно оценили первичную продукцию Мирового океана. Оказалось, что в год морские водоросли переводят из неорганического состояния в органическое около 15–20 млрд. т углерода. Другими славами, водоросли за один год накапливают 600–800 млрд. т сырой биомассы.

При этом надо учесть, что биологические ресурсы моря пока не испытывают регулирующего влияния человека. В дальнейшем, когда люди научатся культивировать моря и океаны, их продуктивность, несомненно, еще больше возрастет.

Влияние света на жизнедеятельность морских организмов

В природе есть много явлений, которые еще не удалось объяснить. Так обстоит дело и с вертикальными миграциями зоопланктона. В чем же их суть? Давно замечено, что ряд мелких морских животных в течение суток перемещаются в толще воды. Ночью они поднимаются ближе к поверхности, а днем уходят на глубины. Небольшой планктонный рачок-калянус (Calanus finmarchicus) проходит за сутки около 500 м, а суточные перемещения некоторых более крупных планктонных организмов охватывают слои до 800—1000 м. Средняя скорость движения у разных организмов лежит в пределах 0,5–3 м/мин. Любопытно, что во время своих вертикальных перемещений животные транзитом проходят водные слои с разной температурой. Иной раз температурные различия между слоями составляют около 10°. В то же время для горизонтального распределения этих видов организмов встают непреодолимой стеной значительно меньшие температурные различия, ограничивая их географическое распространение.

У гидробиологов пока нет единодушного мнения о причине суточных миграций. Некоторые считают, что вертикальные миграции постепенно выработались у организмов как защитное приспособление от нападения хищников. Однако большинство биологов убеждено, что причина миграций — в суточных изменениях естественной освещенности.

Дальнейшее развитие биологических и биофизических исследований позволит окончательно решить проблему суточных вертикальных миграций.

По нашему же мнению, гидробиологи, утверждающие, что изменения освещенности вызывают вертикальное перемещение организмов с суточным ритмом, ближе к истине. Об этом свидетельствуют и наблюдения Т. С. Петипа 30 июня 1954 г. за поведением зоопланктона в Севастопольской бухте во время солнечного затмения. Диск Солнца был закрыт на 92 %, благодаря чему нормальная дневная освещенность поверхности моря, как считает Петипа, уменьшилась в 17 раз. Обловы зоопланктона по всей толще воды показали, что многие из видов зоопланктона поднялись из глубин в верхний слой воды 0–5 м. После окончания затмения, когда была восстановлена нормальная освещенность поверхности моря, основная масса зоопланктона очень быстро опустилась в более глубокие слои.