4. Allow your hands to follow through until they are by your side.
Muscles Involved
Primary:Pectoralis major, latissimus dorsi
Secondary:Serratus anterior
Swimming Focus
Similar to the standing double-arm medicine ball throw down, this exercise targets both the pectoralis major and latissimus dorsi in an explosive manner. The primary difference between the two exercises is the release point of the medicine ball. In this exercise the medicine ball is released as the hands pass the shoulders. The main benefit of the exercise is that it strengthens both the pectoralis major and latissimus dorsi in an overhead position. This benefit will enhance your confidence and strength during the initial portion of the pull phase for all strokes.
A key to maximizing the benefits of the exercise is to initiate the throw with the arms in an elongated position. You can accentuate this positioning by catching the medicine ball passed to you by your partner, decelerating the ball, and then quickly reversing its direction to initiate the throwing motion.
Wheelbarrow
Execution
1. From a push-up position, have your partner grab both feet and lift them to waist level.
2. Focus on holding your body in a straight line from your ankles to the top of your head.
3. Moving one hand at a time, walk your hands forward.
Muscles Involved
Primary:Pectoralis major
Secondary:Anterior deltoid, triceps brachii
Swimming Focus
The wheelbarrow exercise focuses on several areas that are beneficial to the swimmer. As a strengthening exercise it targets the pectoralis major and triceps brachii, which are vital contributors to the portion of the pulling phase of all four strokes. The exercise also requires activation of the shoulder-, core-, and hip-stabilizing musculature, which will help with injury prevention and maintenance of a streamlined body position in the water. One of the biggest advantages of the wheelbarrow exercise is that it builds mental toughness.
The emphasis should be on maintaining the body in a straight line from the ankles to the tip of the head. Flaws encountered when performing this exercise include not holding the head in line with the rest of the body and allowing excessive arching or sagging of the back. Both alterations in body position increase the risk of injury. To transition into performing the exercise, first attempt to hold the wheelbarrow position without moving your hands. When you are able to hold this position with good technique for 60 seconds, you can begin to start the walking motion with your hands.
SAFETY TIP
When performing this exercise on a pool deck, wear protective gloves to avoid unnecessary trauma to the hands.
CHAPTER 5
ABDOMEN
To move your body efficiently through the water, a coordinated movement of the arms and legs must occur. The key to this coordinated movement is a strong core, of which the muscles of the abdominal wall are a primary component. Besides helping to link the movement of the upper and lower body, the abdominal muscles assist with the body-rolling movements that take place during freestyle and backstroke and are responsible for the undulating movements of the torso that take place during butterfly, breaststroke, and underwater dolphin kicking.
The abdominal wall is composed of four paired muscles that extend from the rib cage to the pelvis. The muscles can be divided into two groups—a single anterior group and two lateral groups that mirror each other. The anterior group contains only one paired muscle, the rectus abdominis, which is divided into a right and left half by the midline of the body. The two lateral groups each contain a side of the remaining three paired muscles—the external oblique, internal oblique, and transversus abdominis (figure 5.1). In human motion and athletics, the abdominal muscles serve two primary functions: (1) movement, specifically forward trunk flexion (curling the trunk forward), lateral trunk flexion (bending to the side), and trunk rotation; and (2) stabilization of the low back and trunk. The motions mentioned earlier result from the coordinated activation of multiple muscle groups or the activation of a single muscle group.
Figure 5.1 Abdominal muscles.
The rectus abdominis, popularly known as the six pack, attaches superiorly to the sternum and the surrounding cartilage of ribs 5 through 7. The fibers then run vertically to attach to the middle of the pelvis at the pubic symphysis and pubic crest. The six-pack appearance results because the muscle is divided by and encased in a sheath of tissue called a fascia. The visible line running along the midline of the body dividing the muscle in two halves is known as the linea alba. Contraction of the upper fibers of the rectus abdominis curls the upper trunk downward, whereas contraction of the lower fibers pulls the pelvis upward toward the chest. Combined contraction of both the upper and lower fibers rolls the trunk into a ball.
The muscles of the two lateral groups are arranged into three layers. The external oblique forms the most superficial layer. From its attachment on the external surface of ribs 5 through 12, the fibers run obliquely (diagonally) to attach at the midline of the body along the linea alba and pelvis. If you were to think of your fingers as the fibers of this muscle, the fibers would run in the same direction as your fingers do when you put your hand into the front pocket of a pair of pants. Unilateral (single-sided) contraction of the muscle results in trunk rotation to the opposite side, meaning that contraction of the right external oblique rotates the trunk to the left. Bilateral contraction results in trunk flexion.
The next layer is formed by the internal oblique. The orientation of its fibers is perpendicular to those of the external oblique. This muscle originates from the upper part of the pelvis and from a structure known as the thoracolumbar fascia, which is a broad band of dense connective tissue that attaches to the spine in the upper- and lower-back region. From its posterior attachment, the internal oblique wraps around to the front of the abdomen, inserting at the linea alba and pubis. Unilateral contraction rotates the trunk to the same side, and bilateral contraction leads to trunk flexion. The deepest of the three layers is formed by the transversus abdominis, so named because the muscle fibers run transversely (horizontally) across the abdomen. The transversus abdominis arises from the internal surface of the cartilage of ribs 5 through 12, the upper part of pelvis, and the thoracolumbar fascia. The muscle joins with the internal oblique to attach along the midline of the body at the linea alba and pubis. Contraction of the transversus abdominis does not result in significant trunk motion, but it does join the other muscles of the lateral group to function as a core stabilizer. An analogy that often helps people grasp the core-stabilizing function of the muscles of the lateral group is to think of them as a corset that, when tightened, holds the core in a stabilized position.
Note that other muscles, including the serratus anterior and hip flexors, can be recruited along with the abdominal muscles when many of the exercises in this chapter are performed. The serratus anterior commonly functions as a stabilizer of the scapula, as described in chapter 3, but it is also activated during many of the exercises that target the external and internal obliques. The two primary hip flexors are the rectus femoris and the iliopsoas. As described in chapter 7, these muscles can either flex the hip or flex the lower trunk, depending on whether the lower extremity or trunk is stabilized.