Выбрать главу

Насчёт первого и последнего не уверен, но есть предположение, что я всё же какодемон, ибо вселился в чужое тело и теперь творю злые вещи — заставляю это тело развиваться и учиться.

В любом случае, по этому поводу они приставили ко мне учителей уже в столь раннем возрасте. Хотя, конечно же, ситуация была не совсем рядовая, и не только потому, что обычно в таком возрасте не назначают личных учителей и домашнее обучение, но и потому, что образование это было иного характера, чем то было привычно.

Естественно, 3-летнего ребёнка не стали заставлять упражнять своё тело в физических испытаниях, чтобы его развить, хотя для греков это было также привычно, как и резня друг с другом за право зваться лучшим полисом всей Ойкумены.

Вместо этого, всё то время, которое обычно греки посвящали физическим упражнениям и тренировкам, чтобы развить тело и дух, было решено консилиумом учителей посвятить упражнениям умственным, ибо дух мой был «уже крепок» в силу «благословения моего духа-хранителя».

Таким образом, я стал изучать передовую по меркам «этого» времени физику, математику, философию, риторику, а также другие науки. Разумеется, все эти науки по меркам «моего» времени — крайне примитивные.

Так что, как ни странно, мне было весьма скучно — учителя хотя и доносили мне весьма полезную информацию, новой в ней было не содержание, а лишь форма.

Соответственно, чтобы избавить себя от необходимости заниматься разного рода фигнёй, я постепенно начал спорить с моими учителями, большинство из которых были, по совместительству, великими учёными, причём чем дальше в лес, тем жёстче.

Это может показаться глупым и стандартным для ребёнка, а мне, как ученику, за такое обычно бы прилетело по лицу, но, увы для учителей, я был царской особой, за одно лишь прикосновение к которой можно было не только присесть на бутылку, но и обняться головой или другими частями тела с острыми и режущими предметами.

Конечно же, это не значило, что они вообще не могли применять насилие по отношению ко мне, да и вовсе не значило, что я мог позволить себе что угодно, но удерживало их от насилия.

Поэтому, воспользовавшись этим преимуществом, я сделал ход конём — показал им их ничтожность в том, чем они гордились больше всего — науке.

Нуль и мнимые числа? Проблема Кардано, комплексные числа и комплексные плоскости, модули чисел, измена геометрии с алгеброй — мне понадобилось 3 года, но я таки доказал этим брюзгам, что такое мощь комплексных чисел.

Унизив их, я заставил этих «величайших из умов» признать, что они и их мысли — примитивное ничто в сравнении с будущим. Я доказал им, что их мастерство прозы, личная харизма и умение написать действительно занимательный текст — ничто в сравнении с моим сухим, обезличенным текстом, где применяются самые различные обозначения, сокращения и условности.

Разумеется, аргументы были всё те же — мнимых чисел не существует в реальности. Ну, собственно, как и отрицательных чисел, нуля, рациональных чисел, корней из отрицательных, а также многих других вещей, которые нельзя увидеть глазом.

Так что, как ни странно, пришлось объяснять им, что нуль существует, и если приводить наиболее понятный пример — это отсутствие или ничего. Конечно же, подобная формулировка их не прельстила, а потому в ответ на неё я получил «что и требовалось доказать — царская кровь не гарантия великого ума, а потому дитя — это всё ещё дитя, какой бы гений в нём не поселился и каких бы кровей оно ни было, а потом его максимум — примитивные, как и само его детское мышление, формулировки».

Было очень обидно, но всё же пришлось сформировать более внятную формулировку, подходящую и понятную для них — «нуль — это целое, натуральное число, которое при сложении с любым числом или вычитании из него не меняет последнее, то есть, даёт результат, равный этому последнему».

Если же мы говорим про математику как таковую в контексте позиционной системы счисления, то «нуль — это математический знак, выражающий отсутствие значения данного разряда в записи числа в позиционной системе счисления».

Для последнего значения мне пришлось объяснить им смысл позиционной системы счисления, а также то, почему она удобнее непозиционных систем счисления при различных операциях, а также, почему нуль в этой системе — один из самых важных её элементов.

Показав на ряде примеров, почему без нуля математика существовать не может, а также неоспоримое превосходство позиционных систем, причём не только десятичной системы, но и других, над непозиционными системами, я закрепил своё первое завоевание — великолепный и всемогущий нуль.