Металлический литий представляет собой мягкий серебристо-белый металл, первый среди металлов в Периодической системе и первый щелочной металл. Как и все щелочные металлы, он активно реагирует с водой, и хранить его не так просто. Если другие щелочные металлы защищают от кислорода воздуха и влаги воды, храня под слоем керосина, для лития этот вариант не подходит – плотность лития мала, и в керосине он не тонет. Чтобы литий не реагировал с окружающей средой, приходится вплавлять его в кусок парафина. В отличие от других щелочных металлов литий не реагирует с кислородом при низких температурах, чтобы пошла реакция, нужно нагреть этот щелочной металл хотя бы до 100 °С. Зато, опять же в отличие от других щелочных металлов, при гораздо меньшем нагревании литий реагирует с другим компонентом атмосферы – азотом, образуя красно-коричневый нитрид лития, Li3N.
И ещё одно применение лития, возможно не самое приятное, хотя тоже связано с энергетикой, – термоядерный боеприпас, или водородная бомба. «Взрывчатым веществом» водородной бомбы является гидрид лития (LiH), в котором с изотопом литий-6 связан тяжелый водород (дейтерий). Схема действия этого оружия такова: «запалом» водородной бомбы является атомная бомба; взрыв атомной бомбы высвобождает нейтроны, которые, поглощаясь ядром лития-6, вызывают его разрушение с образованием гелия и сверхтяжелого водорода (трития), который затем вступает во вторичные реакции изменения состава атомного ядра. Термоядерные боеприпасы не только в состоянии обеспечить большую, чем у обычных атомных бомб, общую мощность взрыва, но и отличаются значительно большим количеством радиоактивных осадков, так что, надеюсь, в этой области литий никогда не будет применяться на практике.
4. Бериллий
Бериллий – первый элемент Периодической системы, который не образовался во время Большого взрыва, а появился позже – после появления первых звезд. Именно после – бериллий образовался не в термоядерных топках звёзд, подобных нашему Солнцу.
Бериллий, как и многие другие элементы, образуется во время разрушения звёзд – тогда, когда энергия вспышки сверхновой разрывает ядра тяжелых атомов на более легкие. То, что бериллий образуется не во время активной работы звезд, а при их разрушении, объясняет сравнительно малую распространённость этого элемента и в космосе, и в земной коре.
Одной из форм существования бериллия в земной коре являются минералы берилл и изумруд, оба эти минерала известны еще с античности. По легенде, император Рима Нерон смотрел на гладиаторские поединки через большой берилл, который природа отшлифовала так, что его можно было использовать в качестве подзорной трубы. Зелёную окраску бериллу и изумруду придают следовые количества хрома. Анализ изотопного состава кислорода в содержащих бериллий драгоценных камнях позволяет определить источник камня – это возможно, так как соотношение изотопов кислород-16 и кислород-18 на разных участках земной коры различается, и современные методы анализа позволяют обнаружить это различие. Изотопный анализ драгоценных камней показал, что происхождение изумрудов Римской империи – Альпы, точнее их район, ныне расположенный на территории Австрии, хотя некоторые из камней прибыли в Рим из более дальних мест – оттуда, где сейчас расположен Пакистан. Гораздо более интересно то, что некоторые изумруды, принадлежавшие правителям Империи Великих Моголов, судя по изотопному анализу – южноамериканские, их залежи могли располагаться на территории современной Колумбии. Косвенно это является свидетельством того, что государство, существовавшее на территории современных Индии, Пакистана, Бангладеш и юго-восточного Афганистана, могло отправлять экспедиции в Южную Америку через Тихий океан, хотя подтверждающих это исторических источников нет. К основным минералам бериллия относятся алюмосиликаты берилл и бертрандит. Бывает, что бертрандит образует кристаллы огромного размера. Рекордный образец бертрандита был найден в американском штате Мэн – длина кристалла составляла 5 метров, а весил он 20 тонн.
Предположение о том, что берилл и изумруд содержат новый химический элемент, появилось в восемнадцатом веке. Драгоценные камни проанализировал Луи Никола Воклен и 15 февраля 1798 года объявил, что обнаружил новый элемент, хотя и не смог выделить его из оксида. Металлический бериллий был получен только в 1828 году в результате реакции хлорида бериллия (BeCl2) с калием. Сам Воклен предложил дать новому элементу название «глюциний», бериллием элемент назвал немецкий химик Клапрот.