В Китае теорема Пифагора известна как Кон Ку и впервые появляется в математическом трактате «Чу Пей Cyan Чинь», что можно перевести как «Классическая арифметика гномона». Наиболее вероятно, что этот труд был написан между 500 и 300 годами до н. э., и, по общему мнению, Пифагор его знать не мог. «Чу Пей Суан Чинь» — это сумма знаний, пришедших из гораздо более отдаленных времен и собранных в III веке до н.э. двумя знаменитыми математиками, Чжао Шуаном и Лю Хуэем. К счастью, в его содержании можно отделить древние пласты от позднейших наслоений. Что касается теоремы Пифагора, этот математический трактат касается ее только в примитивной форме, то есть дает конкретные числовые соотношения, а не общие правила нахождения пифагоровых троек.
В трактате «Чу Пей Суан Чинь» есть один пассаж о прямоугольных треугольниках, в котором интерес вызывает описание некоей фигуры, названной диаграммой гипотенузы и представляющей собой не что иное, как визуальную демонстрацию теоремы Пифагора с помощью треугольника со сторонами а = 3, b = 4 и с = 5. В этом доказательстве строится квадрат со стороной (а + b)у который делится на четыре треугольника с основанием а и высотой b, и квадрат со стороной с (см. рисунок 3 на следующей странице). В высшей степени вероятно, что доказательство восходит к эпохе уже после Пифагора, но даже в этом случае его стоит разобрать подробнее.
Дан прямоугольный треугольник с катетами а и b и гипотенузой с. Следует доказать, что площадь квадрата со стороной с равна сумме площадей квадратов со сторонами а и b.
РИС. з
РИС. 4
РИС. 5
Если к исходному треугольнику присоединить три равных ему треугольника внутри квадрата со стороной с (см. рисунок 4), то в центре этого квадрата останется незанятым меньший квадрат. Можно заметить, что сторона этого меньшего квадрата равна b - а. Таким образом, площадь меньшего квадрата можно выразить как (b - а)2 = b2 - 2ab + a2, учитывая, что (b - а)2 = (а - b)2. Площадь квадрата со стороной с представляет собой площадь четырех квадратов с высотой а и основанием b, плюс площадь маленького квадрата, таким образом, теорему можно считать доказанной:
с2 = 4(ab/2) + a2 - 2ab + b2 = а2 + b2.
«Чу Пей Суан Чинь» содержит и еще одно блестящее доказательство с применением простого переноса частей (см. рисунок 5).
Второй классический китайский трактат, в котором рассматриваются геометрические аспекты, связанные с теоремой Пифагора, датируется примерно 250 годом до н.э., хотя Лю Хуэй откомментировал его и переписал в 263 году.
Речь идет о «Дзю Чжан Суань Шу»> что значит «Математика в девяти книгах». Последняя, девятая глава полностью посвящена прямоугольным треугольникам и представляет собой 24 задачи, решения которых в той или иной степени основаны на теореме Пифагора. Самая известная из них — задача о сломанном бамбуке, в которой описывается прямоугольный треугольник, образованный сломанным стволом бамбука:
Бамбук высотой 10 футов сломан так, что его верхушка опирается на землю на расстоянии в три фута от основания. Надо вычислить, на какой высоте находится место излома.
Решение этой задачи сочетает в себе теорему Пифагора и применение квадратных уравнений, так как представляет собой решение уравнения
х2 + З2 = (10 - х)2.
Пифагор не оставил потомкам ни строчки, так что не существует ни одного доказательства теоремы, авторство которого можно было бы приписать ему. Ее решение дается во множестве источников, вплоть до детального описания его в самой важной в истории геометрии книге «Начала» Евклида. Но в любом случае не стоит отказывать Пифагору и его последователям в определенной гениальности, так как именно они совершили переход от частного к общему и сформулировали теорему, применимую ко всем частным случаям.
Первое доказательство теоремы, которую традиция приписывает Пифагору, было эмпирическим. Берется треугольник со сторонами a, b, c (катеты и гипотенуза), на которых строятся три квадрата согласно строгим правилам греческой геометрии (см. рисунок 6). Из этих квадратов складываются два различных квадрата. Первый получается из двух квадратов, построенных на катетах и четырех прямоугольных треугольников, каждый из которых равен исходному треугольнику (см. рисунок 7). Второй квадрат состоит из тех же четырех треугольников и квадрата, построенного на гипотенузе (см. рисунок 8). Если из обоих квадратов убрать эти треугольники, площадь центрального квадрата второго (с2) будет равна площади двух малых квадратов первого (b2 + а2), что доказывает теорему Пифагора.