Выбрать главу

Эта разница в «почти», проявляющаяся на расстоянии семи октав, и называется пифагоровой коммой. Можно вычислить ее значение СР, приняв за отправной пункт частоту ƒ и сравнив цепочки из двенадцати квинт и из семи октав:

CR = ƒ · (3/2)12/(ƒ · 27 ) = 1, 013643265.

Таким образом, разница составляет более 1 % октавы, или почти четверть тона. Эта разница возникает потому, что дробь, которой выражается квинта, несовместима с октавой, что можно легко доказать. Можно выяснить, существуют ли такие значения х и у, которые позволяли бы увязать эти дроби:

(3/2)x = 2y => 3x/2x = 2y => 3x = 2x+y.

Как видим, необходимо найти число, которое было бы одновременно некоторой степенью 2 и 3. Но так как 2 и 3 — простые, существование такого числа противоречило бы фундаментальной теореме арифметики, согласно которой любое натуральное число может быть представлено единственным образом в виде произведения простых чисел. Эта теорема, сформулированная еще Евклидом, была доказана математиком Карлом Фридрихом Гауссом (1777-1855). Исходя из нее можно утверждать, что интервалы, сложенные из квинт и из октав, никогда не сойдутся, то есть существование хроматического звукоряда без пифагоровой коммы невозможно.

НАЗВАНИЯ НОТ

Греки называли ноты первыми буквами ионийского алфавита, присвоив отдельную букву каждому полутону и каждому звуку, повышенному на октаву. Наше фа обозначалось как а, повышенное фа — как β (бета), фа, повышенное на две ступени, — γ (гамма).

ТРИ СРЕДНИХ

Пифагор не только был очарован мистикой натуральных чисел, на него большое влияние оказали открытия, связанные со средним арифметическим, средним геометрическим и средним гармоническим, что можно увидеть на схеме справа. Таким образом, 3:4 — это среднее арифметическое 1 и 1/2:

1 - 3/4 = 3/4 - 1/2.

а 2:3 — среднее гармоническое 1 и 1/2:

(1 - 2/3)/1 = (2/3 - 1/2)/(1/2).

Пифагор экспериментально доказал, что струны с соотношением длин 1:2 и 2:3 (среднее гармоническое 1 и 1/2) и 3:4 (среднее арифметическое 1 и 1/2) производят приятные звуки, и из этого факта вывел звукоряд, о котором мы уже говорили. Назвал он эти интервалы диапазон, диапенте и диатессарон, а сегодня они известны как октава, квинта и кварта. Можно заметить отсутствие здесь среднего геометрического: возможно, Пифагор отказался от него, потому что столкнулся с проблемой высшего порядка, и весьма серьезной, как мы покажем дальше. Операция со средним геометрическим приводит к появлению несоизмеримых чисел и в точности соответствует повышенному фа хроматического ряда.

Римляне также использовали для записи музыкальных звуков первые буквы своего алфавита. Римский философ Боэций (480-525), автор «Утешения философией», взявшийся за задачу совместить философские школы Платона и Аристотеля, создал трактат о теории музыки. В этой книге, известной под латинским названием De musica («О музыке»), он предлагает звукоряд из 15 нот, представляющих две октавы, игнорируя циклический принцип построения октав.

Этот принцип вспомнят позже, обозначая одними и теми же буквами одинаковые ноты разных октав. Так называемая немецкая, или английская, номенклатура ввела для семи нот главной октавы большие буквы от А до G, следующей октавы — маленькие буквы от а до g, третьей октавы — двойные маленькие буквы ( аа, bb, сс, dd, ee, ff, gg). Таким образом, семь из 12 звуков, соответствующие нынешним белым клавишам фортепьяно, получили собственные имена. Остальные пять были названы позже, после появления концепции бемолей, бекаров и диезов. Их названия основаны на названиях основных семи.

«Рука Гвидо», как она изображена в работах бенедиктинского монаха.

В XI веке тосканский монарх Гвидо д’Ареццо (ок. 995-1050) значительную часть времени посвятил тому, чтобы создать мнемонические правила для исполнителей музыки. Самое, пожалуй, известное из них называется «рука Гвидо», в соответствии с которым ноты располагаются в алфавитном порядке на кисти руки. Гвидо д’Ареццо даже переименовал ноты, присвоив каждому звуку слог из широко известного в то время гимна Иоанну Крестителю: «Чтобы слуги твои голосами своими смогли воспеть чудные деяния твои, очисти грех с наших опороченных уст, о Святой Иоанн», что на латыни звучит следующим образом:

Ut queant laxis

Resonare fibris

Mira gestorum

Famuli tuorum

Solve polluti

Labii reatum

Sancte Iohannes.