Демон Лапласа выдавал начальные условия, и Лаплас (при условии наличия неограниченного времени и, по-видимому, штата вычислителей: ЭВМ еще не было) брался выдавать любой требуемый прогноз. Он вообще был большим оптимистом, Лаплас, он хотел создать универсальную (одну!) формулу, обобщающую сразу все законы!
"Этот вид детерминизма, — писал выдающийся физик, один из основателей квантовой механики, Макс Борн, рассматривался физиками прошлого столетия как единственно разумное истолкование причинности, а применяя его, как они хвастливо заявляли, они избавляют физику от последних остатков метафизики" (В данном случае — умозрительного, отвлеченно-философского подхода к миру). Прошло немало времени, прежде чем это ослепление могуществом опытного знания в сочетании с вычислительными методами не кончилось.
Читатель, вероятно, хорошо знает, что произошло это в момент рождения квантовой механики. Одна из основных формул этого учения выглядела так, что выходило: если мы хотим, точно определить время и место появления элементарной частицы, мы должны необыкновенно расширить временные и пространственные рамки, в которых с гарантией находилась бы эта частица. Казалось бы, местная и поправимая неувязочка (так это и воспринял, кстати, А. Эйнштейн, до конца жизни не отказавшийся от мечты об абсолютном знании причинно-следственных связей в физике). Но с появлением принципа неопределенности Гейзенберга у ученых как будто пелена начала падать с глаз. Они увидели закон неопределенности всюду вокруг себя, и везде — в действии.
В кинетической теории газов, старой и почтенной отрасли физики, например, давным-давно пользовались статистическими методами, сходными со статистическим аппаратом квантовой механики. Просто в основе теории газов лежит оправдательное рассуждение: в принципе результат строго определен последовательностью событий (соударений молекул), только рассмотрение явления надо вести статистически, не индивидуализируя молекулы, поскольку мы "еще не научились" узнавать точное начальное состояние (скорость, место) каждой из них. Но ведь именно такими словами защищали принцип строгой индивидуальной причинности для микрочастиц противники квантовой физики. "Не научились", вот повысим точность измерений, и тогда...
Движение молекул в газе или жидкости часто сравнивают с игрой в бильярд. Хороший бильярдист сильным и точным ударом может заставить шар через два-три отскока от стенки и от других шаров попасть точно в лузу. Прежний, лапласовский детерминизм подразумевал, что при хорошем математическом расчете и идеальном глазомере (и отсутствии трения) можно также попадать в лузу и через двадцать, и через тридцать, и через тысячу отскоков. Но основатели квантовой механики прикинули: не получается! Неопределенность остается и здесь! И дело тут не в несовершенстве измерений и "глазомера", а в принципиальной недостижимости полной, стопроцентной точности в определении угла и отскока скоростей.
"Лучшие измерения, — писал Макс Борн, — дают сегодня 6 или 7 десятичных знаков. Сначала кажется, что это не слишком вредит. Ведь демон (Лапласа. — А. Г.) — это лишь отдаленный идеал, и если каждое поколение будет повышать точность измерений, то к этому идеалу можно приблизиться. Так думали всегда. Однако это неверно... Абсолютно точное измерение было бы демонической, но не человеческой работой". Иначе говоря, строгий механический детерминизм оборачивается мистикой! Короче, чем дальше от нас прогнозируемый момент, тем больше прогноз должен становиться вероятностным, статистическим, неопределенным.
Явное родство с принципом неопределенности квантовой механики обнаруживает и такая наука, как генетика, причем в своем главном аспекте — теории наследственности. По сей день некоторые биологи ломают головы: как в такой точной системе, какой является генетический механизм наследственности, могут появляться ошибки? Иногда даже говорят, что это специально запланировано так, чтобы поставлять материал — мутации — для естественного отбора. Конечно, если бы не было ошибок, не было бы эволюции. Недаром говорят, что у самых древних позвоночных на Земле — двоякодышащих рыб невероятно длинная ДНК. С таким запасом дублирующей информации, что никакая ошибка не в состоянии сбить их с круга тупого самовоспроизводства без прогресса. И это только подтверждает тот факт, что ошибки в считывании кода наследственности в этом преимущественно физико-химическом процессе — неизбежная дань всеобщему закону неопределенности. Природа может нейтрализовать действие этого закона, лишь до бесконечности удлиняя нити ДНК или стабилизируя все ошибки посредством естественного отбора нормы, а все остальное уничтожая. Значит, принципу неопределенности мы обязаны как своим высоким положением на лестнице эволюции, так и плохо излечимым пока болезням из-за генетических ошибок.