Выбрать главу

Глава 2

Фигуры

Геометрия — единственная наука, которую Богу угодно было пожаловать человеческому роду.

Томас Гоббс

Циклоиды вместо овец

Те, кто страдает бессонницей, обычно считают овец, чтобы заснуть. Математики богослов Блез Паскаль (1623–1662) нашел для себя другой способ призвать сон. В конце жизни он практически полностью посвятил себя богословию, оставив в стороне науку, которая до того была его основным занятием. При этом Паскаль страдал от бессонницы, которая не отступала, сколько бы овец он ни сосчитал. По всей видимости, недостаток сна стал причиной постоянных головных болей мыслителя, а во времена, когда еще не знали о болеутоляющих, это было настоящим мучением.

Однажды, страдая от бессонницы, Паскаль задумался о геометрии, в частности о циклоидах — кривых, обладавших загадочным очарованием. Головная боль вскоре утихла, и ученый смог заснуть. С тех пор мысли о циклоидах стали для Паскаля безотказным средством против бессонницы и головных болей.

Циклоида определяется механически как траектория фиксированной точки катящейся окружности.

Размышляя об этом любопытном явлении, Паскаль нашел ему лишь одно объяснение — религиозное: Богу, по всей видимости, математика угодна больше, чем что-либо еще. Паскаль даже учредил особую премию для авторов интересных открытий, связанных с циклоидой, а членом жюри назначил известного специалиста Жиля Персонна Роберваля (1602–1675).

Об этом превосходном математике также следует сказать несколько слов. Роберваль обожал циклоиду — кривую, вызвавшую столько жарких споров, что некоторые называли ее Еленой геометрии, имея в виду Елену Троянскую. Роберваль участвовал во многих подобных диспутах по одной причине: должность главы кафедры математики Коллеж де Франс освобождалась каждые три года, и новый глава назначался по результатам конкурса на тему, указанную его предшественником. Естественно, действующий глава кафедры хранил все интересные результаты в тайне, а затем представлял их во время конкурса, в котором обычно одерживал верх, так как имел фору. Но если бы кто-то, кроме него, открыл какую-то секретную теорему и представил ее на суд жюри, разразилась бы настоящая буря. Роберваль возглавлял кафедру 40 лет — достаточно времени, чтобы со всеми перессориться. Однажды его оппонентом был итальянец Торричелли, и Паскаль, который, как и Роберваль, был французом, встал на сторону соотечественника. Однако позднее было доказано, что Торричелли верно вычислил площадь, ограниченную кривой, и определил метод построения касательных к ней совершенно независимо от вспыльчивого Роберваля.

И в завершение рассказа — снова о Паскале: его отец не воспринимал увлечение сына математикой всерьез, пока тот не сформулировал самостоятельно утверждения, охватывавшие содержание 32 первых теорем «Начал» Евклида. Мальчику в то время было всего девять лет, и после этого отец уступил просьбам сына.

Ускользающий многоугольник

Вундеркинд Карл Фридрих Гаусс в 19 лет обнаружил, какие многоугольники можно построить с помощью циркуля и линейки, а какие — нет. В то время Гаусс колебался между лингвистикой и математикой, поскольку к обеим наукам проявил удивительные способности. Раскрыв тайну многоугольников, он понял, что призван стать геометром, и занялся математикой. Гауссу не пришлось сожалеть о выборе: многие годы он оставался бесспорным лидером в своей области.

Найденный им ответ к задаче о многоугольниках был таким: правильный n-угольник можно построить с помощью циркуля и линейки, если выполняется равенство

n = 2kp1p2·…·pm при k >= 0,

где рi — либо единицы, либо различные простые числа Ферма. Осталось объяснить, какие числа называются числами Ферма. Число Fp называется числом Ферма, если имеет вид