Эйлер работал так быстро, а служащие Санкт-Петербургской академии наук были столь нерасторопны, что не успевали публиковать его работы. Труды ученого по мере поступления в Санкт-Петербургскую академию наук складывались в стопку, а публиковались в обратном порядке — сверху вниз. В результате всем казалось, что Эйлер публикует свои работы наоборот — статьи более высокого уровня появлялись в печати раньше, чем те, в которых он только описывал новое открытие, и все это напоминало путешествие во времени. Живительно, что даже прогрессирующая слепота не замедлила работы: Эйлер, разумеется, был вовсе не в восторге от своего недуга, но не падал духом. Он ослеп на один глаз еще в расцвете лет, но по этому поводу сказал только: «Так я буду меньше отвлекаться», — и продолжил работу.
Портрет Эйлера кисти швейцарского художника Эмануэля Хандманна, выполненный в 1753 году, на котором Эйлер уже изображен слепым на один глаз.
Эйлер был героем множества анекдотов, историй и математических каламбуров, так что случай, о котором мы сейчас расскажем, один из самых известных, но далеко не единственный. К счастью, истории об Эйлере столь популярны, что в этой книге нам нет нужды рассказывать их все. Любопытно, что уже не сам математик, а истории о нем стали темой докторских диссертаций.
Дьёдонне Тибо в своих заметках отмечает, что однажды двор императрицы Екатерины II посетил Дени Дидро (1713–1784). В это время в Петербурге находился и Эйлер — протестант, а следовательно, верующий. Религиозные взгляды француза на протяжении жизни менялись, и в то время он считал себя атеистом. Как и следовало ожидать, для Дидро и Эйлера при дворе был организован философский диспут.
Эйлер начал беседу с заявления:
«Милостивый государь,
(a + bn)/n = x
следовательно, Бог существует. Отвечайте».
Дидро не нашел, что ответить на эту математическую резкость, поскольку, по словам Тибо, совершенно не знал математики. Он не проронил ни слова, так же молча вышел из аудитории, а вскоре вообще вернулся в Париж.
На этом исторический анекдот заканчивается. В действительности более поздние исследования, проведенные Американским математическим обществом, дают нам другую версию изложенных событий, хотя заметки Тибо всегда славились своей достоверностью и непредвзятостью. Дидро вовсе не был полным профаном в математике — он не был профессионалом, однако написал несколько весьма достойных математических статей. С другой стороны, аргумент Эйлера сбил бы с толку любого: он был совершенно бессмысленным, особенно в устах лучшего математика мира. Наконец, неудивительно, что Дидро решил удалиться: не принимая во внимание причины личного характера, отметим, что кажется совершенно разумным покинуть холодную Россию, высший свет которой насмехается над тобой, и вернуться в Париж, где тебя ожидает во всех смыслах теплый прием.
Обычно ученых изображают непривлекательными внешне: вспомните бессмертного профессора Турнесоля из комиксов о Тинтине — пожилого, невысокого и, разумеется, не отличающегося атлетическим телосложением. Но в то же время ученым всегда присущ блестящий ум и почти всегда — превосходная память. Пал Эрдёш, который практически полностью соответствует этому описанию, помнил все до единого номера телефонов своих многочисленных друзей. Однако Тома Троттера, единственного человека, к которому Эрдёш обращался по имени, он неизменно называл Биллом.
Но не стоит считать всех ученых неспортивными слабаками, лишенными привлекательности, — история знает примеры математиков высоких и низких, спортивных и неуклюжих, красивых и некрасивых, соблазнительных и отталкивающих.
Однако почти никто не знает, что Джакомо Казанова (1725–1798), самый известный донжуан, король всех соблазнителей, был математиком, причем имя его связано со столь сухой наукой, как геометрия. А кроме этого, наш герой, щеголеватый венецианец, был социологом, шпионом, купцом, гурманом, каббалистом, скрипачом, сводником, богословом, адвокатом, игроком, военным, мошенником, танцором, дипломатом, политиком и, разумеется, писателем. Казанова был автором множества более или менее математических текстов, в частности фантастического романа «Икозамерон» и серьезных статей об удвоении куба. Однако наши современники чаще читают его мемуары, особенно ту их часть, где Казанова рассказывает о своих любовных похождениях. Таким образом, существовал по меньшей мере один математик-соблазнитель. Обратное верно лишь в частных случаях.