Найденный им ответ к задаче о многоугольниках был таким: правильный n-угольник можно построить с помощью циркуля и линейки, если выполняется равенство
n = 2kp1p2·…·pm при k >= 0,
где рi — либо единицы, либо различные простые числа Ферма. Осталось объяснить, какие числа называются числами Ферма. Число Fp называется числом Ферма, если имеет вид
Числа Ферма могут быть простыми или составными:
F6 разложил на множители французский математик Фортюне Ландри в 1880 году. Для последующих Fp вплоть до F11 были найдены способы разложения на множители, но больше простых чисел Ферма обнаружить пока не удалось. Неизвестно, существуют ли они.
Из теоремы следует, что возможно построение правильных n-угольников для
n = 3, 4, 5, 6, 8, 10, 12, 15, 16, 17, 24 … вплоть до 65537, что соответствует F4.
Здесь мы ненадолго остановимся и укажем, что, по-видимому, существует руководство, описывающее построение правильного 65537-угольника.
В 1894 году немецкий геометр Иоганн Густав Гермес (1846–1912) завершил немыслимое построение, занимающее свыше 200 страниц. Он не смог опубликовать свой труд и передал рукопись Гёттингенскому университету, где она хранится до сих пор и, возможно, будет храниться вечно — ознакомившись с описанием построения, некоторые сомневаются в его правильности. Каким же огромным будет разочарование, если окажется, что Гермес, потратив столько сил (по оценкам британского геометра Гарольда Скотта Макдональда Коксетера, эта работа заняла десять лет), допустил ошибку. Но вряд ли кто-то готов потратить еще десять лет на то, чтобы убедиться в этом.
Гаспар Монж (1746–1818) не был рыцарем — он родился и вырос в семье торговцев. Его жизнь была неразрывно связана с Наполеоном Бонапартом — Монж последовал за Наполеоном в Египетский поход и с тех пор не расставался с ним. После смерти Монжа король запретил ученикам Политехнической школы присутствовать на похоронах. Сегодня гроб с телом ученого находится в Пантеоне. Монж был создателем начертательной геометрии и одним из крупнейших специалистов по начертательной и дифференциальной геометрии. О событиях его бурной жизни можно было бы написать целую книгу, но мы изложим всего один эпизод.
В юности Монж вел светский образ жизни. Однажды на приеме он услышал, как один из присутствовавших осыпал проклятиями некую вдову Орбон, которая отвергла его ухаживания. Неудачливый донжуан жаждал мести и обвинял вдову во всех смертных грехах. Галантный Монж не стерпел подобных оскорблений в адрес отсутствовавшей дамы и повздорил с этим господином. Ссора оказалась чрезмерно горячей, и оппоненты даже вызвали друг друга на дуэль, которая, впрочем, не состоялась. Спустя некоторое время Монжа представили одной очаровательной вдове, и он был восхищен ее юностью и красотой. Дама не хотела выходить замуж повторно до тех пор, пока не будут улажены все дела ее покойного мужа. Вы уже, наверное, догадались, что это была не кто иная, как мадам Орбон. Они поженились в 1778 году и, как говорят в сказках, стали жить-поживать и даже добра наживать, так как Наполеон пожаловал Монжу титул графа Пелузского. Современники считали этот брак примером для подражания.
Возможно, самым безобидным из деяний Наполеона Бонапарта (1769–1821), которое он совершил во время, свободное от принятия законов, покорения империй и планирования битв, было доказательство теорем. Наполеон, математик-любитель, не достиг профессионального уровня только потому, что, как всем известно, занимался несколько другими вещами. Однако он любил окружать себя блестящими математиками и часто беседовал с Фурье, Монжем, Лапласом и многими другими учеными. Возможно, при этом полководец несколько разочаровывал своих генералов, которых интересовало уничтожение противника, а не построения с помощью циркуля и линейки. Рассказывают, что военачальники, присутствовавшие на встречах императора с интеллектуалами, часто засыпали от скуки. Также известно, что Наполеон повелел геометру Лоренцо Маскерони (1750–1800) читать своим маршалам лекции по геометрии.
Приписываемая Наполеону теорема гласит, что если построить на сторонах произвольного треугольника равносторонние треугольники, то их центры определят равносторонний треугольник. Понять эту красивую теорему, которая считается элементарной теоремой геометрии Евклида, поможет рисунок.