Выбрать главу

Купцы, которые интересовались подобными книгами, одержали верх над мудрецами и мыслителями. Впрочем, науке удалось отыграться: книга «Искусство абака» больше не переиздавалась, в то время как известно о сотнях изданий «Начал» Евклида.

Страница из учебника арифметики, отпечатанного в Тревизо, — первой в истории книги по математике.

Когда закончились буквы

Эта история, в которой сочетаются правда и вымысел, объясняет, почему в аналитической геометрии и в любых книгах по математике неизвестные чаще всего обозначаются буквой х. Начало этой традиции положил Рене Декарт (1596–1650) в своей книге «Геометрия», где обозначал известные числовые величины первыми буквами алфавита (a, b, с, d, …), а неизвестные — последними буквами (х, у, z). Так буква х, которая стоит на первом месте в этой троице, стала синонимом неизвестной величины.

Некоторые полагают, что инициатором такого решения был издатель книги: он заметил, что если литер с другими буквами не хватало, то литер с буквой х всегда было в избытке. Ее печатник и использовал при появлении неизвестной величины.

Как было на самом деле — мы уже не узнаем, но точно можно утверждать, что обозначение, введенное Декартом, сегодня использует весь мир.

Лейбниц и император Китая

Знакомство с двоичной системой счисления для разностороннего мыслителя Готфрида Вильгельма Лейбница (1646–1716) было сродни озарению. Царство единиц и нулей напоминало философский камень, способный превращать железо в золото: оно открывало новые, доселе невиданные горизонты. Единица (подобная Богу) и ноль (ничто) могли объяснить целую Вселенную, а простые 0 и 1 могли порождать любые числа. Это чудо следовало как-то объяснить и применить на практике.

В 1689 году Лейбниц обратился к своему другу, иезуиту Карлу-Филиппу Гримальди, главному придворному математику Китая (в последующие годы они вели весьма интересную переписку). Ученый просил Гримальди использовать все свое влияние и дар убеждения, чтобы, опираясь на новые знания о единице и нуле, убедить императора Кам-хи оставить буддизм и с распростертыми объятиями встретить христианство. Однако император Китая счел, что двоичная система никак не связана с единым Богом и вполне соответствует концепции инь и ян. Он не стал принимать христианство, а двоичная система счисления вернулась в царство арифметики, которое не должна была покидать.

Лейбниц упрямо приписывал полубожественные свойства всем новым математическим понятиям, о которых ему становилось известно. Например, таинственные мнимые числа он считал возвышенными и прекрасными, «амфибиями бытия с небытием».

Несносный ребенок

О детстве Карла Фридриха Гаусса (1777–1855), который был вундеркиндом, обычно рассказывают такую историю. Когда ему было 10 лет, учитель, желая немного передохнуть, дал Гауссу и его одноклассникам задачу, которая заняла бы детей надолго: нужно было найти сумму всех чисел от 1 до 100:

1 + 2 + 3 +… + 98 + 99 + 100.

Спустя несколько минут маленький Гаусс поднялся с места и протянул учителю грифельную доску с ответом: 5050. Как несносный ребенок смог так быстро справиться с задачей? Гаусс заметил, что если записать числа исходного ряда друг под другом справа налево и слева направо,

1 + 2 + 3 + … + 98 + 99 + 100

100 + 99 + 98 + … + 3 + 2 + 1,

то сумма чисел в каждой паре будет равна:

1 + 100 = 2 + 99 = 3 + 98 =… = 98 + 3 = 99 + 2 = 100 + 1 = 101.

Сколько всего таких пар? 100. Так как искомая сумма была в два раза меньше, ответ к задаче таков:

(100·101)/2 = 50·101 = 5050.

Обычно здесь и заканчивается легенда об одаренном ребенке с фантастическими способностями — наверное, для того, чтобы понять ее могли все, даже те, кто далеко отстал от Гаусса по своим способностям.

На самом же деле задача была еще сложнее: учитель предложил ученикам найти сумму первых 100 чисел ряда:

81297 + 81495 + 81693 + … —

каждое слагаемое отличалось от предыдущего на 198. Получить этот результат уже не так просто — выходит, Гаусс был еще умнее, чем гласит легенда.