Рис. 1.23. Как построить раковину, используя числа Фибоначчи
Вообще-то эти числа не должны называться в честь Фибоначчи, потому что не он первый столкнулся с ними. Они были открыты вовсе не математиками, а поэтами и музыкантами в средневековой Индии. Индийские поэты и музыканты стремились к исследованию всевозможных ритмических структур, получаемых комбинацией длинных и коротких ритмических единиц. Если долгий звук в два раза длиннее короткого звука, сколько различных метрических структур получится, когда задано общее количество тактов? Например, восемь тактов вы можете получить с помощью четырех долгих звуков или восьми коротких. Но между этими двумя предельными случаями имеется множество других комбинаций.
В VIII в. индийский писатель Вираханка решил справиться с задачей по определению количества возможных ритмических последовательностей. Он обнаружил, что по мере того, как растет число тактов, количество последовательностей ведет себя как 1, 2, 3, 5, 8, 13, 21… Он понял, как и Фибоначчи после него, что следующее число в последовательности равно сумме двух предыдущих чисел. Так что, если хотите знать количество возможных ритмов при восьми тактах, найдите восьмой член этой последовательности, а значит, сложите 13 и 21, что приводит к 34.
Возможно, математику, скрывающуюся за ритмами, проще понять, чем увеличение численности кроликов Фибоначчи. Чтобы, к примеру, получить все возможные ритмы при 8 тактах, нужно взять шеститактные ритмы, дополненные долгим звуком, и добавить к ним семитактные ритмы, дополненные коротким звуком.
Имеется интригующая связь между последовательностью Фибоначчи и главными героями этой главы, простыми числами. Взгляните на первые числа Фибоначчи: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144… Каждое число Фибоначчи с номером p, где p – простое, также является простым числом. Скажем, 11 – простое число, а одиннадцатое число Фибоначчи, 89, также простое. Если бы это срабатывало всегда, у нас было бы замечательное подспорье в генерации все больших и больших простых чисел. К сожалению, это не так. Девятнадцатое число Фибоначчи 4181, и, хотя 19 – простое, 4181 – составное, оно равно 37 × 113. Никто из математиков еще не сумел доказать, является ли бесконечно много чисел Фибоначчи простыми числами. Это – одна из многих неразгаданных математических тайн, связанных с простыми числами.
Как использовать рис и шахматную доску для поиска простых чисел?
По легенде, шахматы были придуманы индийским математиком. Раджа был настолько благодарен математику за увлекательную игру, что предложил ему самому назвать свое вознаграждение. Изобретатель подумал минутку, а потом попросил, чтобы на первую клетку шахматной доски положили одно зерно риса, на вторую клетку – две рисинки, на третью – четыре, на четвертую – восемь, и так далее, чтобы на каждой последующей клетке было в два раза больше зерен, чем на предыдущей.
Раджа мгновенно согласился, пораженный тем, что математик был готов довольствоваться столь малым, – однако его ждало потрясение. Когда на доску начали класть рис, то зернышки на первых клетках были едва видны. Но на 16-ю клетку потребовалось около килограмма риса. Для двадцатой клетки его слуга прикатил тачку риса. До 64-й клетки, последней на доске, так и не дошли. Для этого общее количество рисинок должно было дойти до ошеломительного числа
Пожелай мы повторить этот подвиг в центре Лондона, гора риса достигла бы окружающей город автомагистрали М25 и была бы настолько высокой, что покрыла бы все здания. Фактически, в этой горе оказалось бы больше риса, чем было выращено на всем земном шаре в предшествующем тысячелетии.
Рис. 1.24. Продолжение удвоения приводит к быстрому росту чисел
Неудивительно, что индийский раджа не сумел отдать математику обещанное вознаграждение и был вынужден вместо этого расстаться с половиной своего состояния. Таков один из способов обогатиться с помощью математики.
Но какое отношение имеет весь этот рис к поиску больших простых чисел? С того времени, как греки доказали, что простые числа продолжаются бесконечно, математики находились в непрестанном поиске умных формул, генерирующих все бо́льшие и бо́льшие простые числа. Одна из лучших таких формул была открыта французским монахом по имени Марен Мерсенн. Мерсенн был близким другом Пьера де Ферма и Рене Декарта, он служил своего рода интернет-хабом XVII в. Мерсенн состоял в переписке с учеными по всей Европе и делился идеями с теми, кто, на его взгляд, мог бы способствовать их дальнейшему развитию.