Выбрать главу

nty > 1014 cm-3c

Отсюда, впрочем, определяется любая из величин, если другая задана: n плотность частиц, ty - время удержания плазмы.

При названных величинах время удержания составляет одну секунду. Этого в принципе достаточно, чтобы процесс пошел с позитивным балансом и энергию можно было отвести.

Плазма не должна касаться стенок рабочей камеры, иначе она мгновенно охладится и реакция синтеза остановится - при низкой температуре (относительно низкой, разумеется) у легких ядер не будет достаточной энергии, чтобы преодолеть силы отталкивания, и они не будут сливаться друг с другом. Кроме того, даже легкое касание стенок "отравляет" плазму посторонними примесями, а это тоже препятствие на пути синтеза ядер.

Вот почему специалисты сразу пришли к решению использовать камеры в виде тороидов-бубликов. При этом кольцевой жгут плазмы замкнут сам на себя, у него нет "торцов" - ни начала, ни конца. От остальной поверхности он отделяется магнитным полем, которое создает как бы стенки тороидальной емкости.

Так устроены, например, ловушки-токамаки. В этих приборах через плазму пропускается ток. Он создает магнитное поле, которое участвует в формировании удерживающей магнитной поверхности. Иначе устроены другие ловушки - стеллараторы. В них есть внешние винтообразные обмотки с проводом, которые окружают тороид камеры. По ним-то вместо плазмы и пропускается ток для создания удерживающих сил. Их преимущество - ток не зависит от состояния плазмы. Преимущество токамаков - ток помимо создания магнитного удерживающего поля еще и нагревает плазму, повышает ее температуру, что является необходимым условием синтеза ядер. И уже получены температуры в десятки миллионов градусов. Впервые токамаки были созданы в Институте атомной энергии имени И. В. Курчатова.

Вот уже не одно десятилетие физики возлагают надежды на магнитные ловушки обоих типов - в нашем отечестве и в США. Некоторые успехи налицо, но они даются все большей ценой, и продвижение вперед давно уже напоминает неспешное соревнование черепахи с Ахиллесом, как бы олицетворяющим требования времени. А ведь после решения проблемы удержания плазмы на повестку дня встанут вопросы экономичности. А нынешние монстры-ловушки плазмы меньше всего ассоциируются с реальностью и инженерной практикой.

Между тем можно предложить иной путь. Причем могут найти применение даже созданные устройства - новые, возможно, не понадобятся. Этот путь основан на принципиально новом методе использования горячей плазмы, которая до сих пор применяется в режиме флюктуаций. Эти флюктуации - принципиальная особенность нынешних процессов термоядерного синтеза. Ведь хаотическое движение частичек происходит и в токамаках и в стеллараторах. Оно обусловлено высокой температурой, которая превосходит температуру многих звезд. Образно говоря, температура - это движение, причем хаотическое, случайное. Это и есть флюктуации.

Перейдем на образный язык. Картина такова, как будто некто гладит тигра, но его шерсть вопреки этому дыбится. Плазму можно уподобить тигру. И чем больше ток в токамаке, тем выше температура плазмы и тем больше флюктуации. Тигр неукротим. Его шерсть неминуемо то там, то здесь касается стенок ловушки - и все пропало.

У меня создалось впечатление, что расчет флюктуаций в плазме ловушек невероятно сложен, упрощенные же расчеты физиков не достигают цели, не отражают реальной картины. В этом - почти непреодолимая трудность. Да, можно предложить способы укрощения тигра, но они приведут, боюсь, к рождению нового поколения монстров-укротителей, совершенно нереальных в воплощении, тем более - в инженерной практике.

Рождение высокотемпературной плазмы - тепловые флюктуации - гибель плазмы. Таков порочный круг, разорвать который нельзя до тех пор, пока мы используем флюктуирующую плазму. Сложилось впечатление, что физики, с которыми я беседовал, плохо знакомы с теорией случайных процессов. Решения задач о пересечении случайным процессом заданных уровней им неведомы. Эти решения (как и другие) они заменяют верой в чудо: больше энергии, больше наблюдений - и все произойдет само собой, плазма будет удержана. Однако единичные удержания даже на секунды не могут внушить оптимизма. Об этом и говорит теория случайных процессов.

Но если нельзя разорвать порочный круг, потому что любая нагретая плазма флюктуирует, то о каком новом пути ее использования можно говорить? Такого пути, очевидно, не должно существовать вообще.

Тем не менее закономерные чудеса в физике все же возможны. Законы газовой динамики свидетельствуют: горячую плазму можно свернуть в кольцо. В этом кольце плазма должна вращаться по винтовой линии, повторяя внутренние очертания ловушки - на некотором расстоянии от ее стенок. Вместе с этим винтовым движением плазма должна вращаться вокруг центра тороидальной ловушки, по большому кругу. Это внешне похоже на винт, замкнутый сам на себя, или на пружину, свернутую в кольцо.

И еще это напоминает смерч, замкнутый точно так же на себя, или змею, кусающую собственный хвост (если отвлечься от вращения по винтовой линии). Простой смерч достаточно устойчив, кольцевой - намного устойчивее, а если есть еще винтообразное движение, то он практически неразрушим и формирует сам себя, вовлекая в свое тело новые и новые порции вещества. При этом давление внутри его падает до очень низких значении, а его винтовое вращение сжимает его стенки до предела.

Я мог бы написать уравнения и формулы, но, думаю, специалист поймет и так, а формулы были бы препятствием не только для неискушенного читателя, но и для иного физика, незнакомого с темой.

Расчеты показывают, что в таком режиме можно достичь сверхзвуковых скоростей винтового движения плазмы. Стенки плазмы приобретают при этом свойства твердого тела. Это кажется парадоксом, но именно это утверждают теория и расчеты. Так я пришел к модели "почти твердой" плазмы. Ее флюктуации сведены к минимуму. Частицы ее как бы вморожены во вращающиеся стенки. Таким же свойством обладают "стенки" смерчей. Не раз замечено, что попавшие в смерч предметы вращаются вместе и падают вместе; гигантские атмосферные вихри, словно по просьбе или молитве, опускают на землю неразрушенные дома и крыши, которые они поднимают в воздух.

Но смерч линеен, а плазма кольцевая, ее начало сходится с концом. Внешне как в токамаке, но только стенки этого полого кольца вращаются - в этом отличие.

Итак, замороженная плазма. Почти твердая кольцевая конструкция, если говорить инженерным языком. С ней и нужно работать физикам. Это и есть тот путь, на который некогда вступил автор этих строк. И тут, я думаю, сыграли роль и ассоциации с эффектом Штермера. Он первым описал кольцо плазмы в виде тора. В своих работах он рисовал эту змею, кусающую свой хвост. Она опоясывает земной шар. Он рассчитал ее устойчивость. Мне оставалось лишь перейти к высоким температурам и давлениям, к сверхзвуковым скоростям вращения тела змеи вокруг ее собственного позвоночника.

Так сигналы из космоса дали первый толчок. Родилась мысль об использовании нефлюктуирующей или почти нефлюктуирующей плазмы (энергия флюктуаций в ней намного меньше энергии вращения).

ПРОЕКТ: УПРАВЛЯЕМЫЙ ТЕРМОЯД

Плазма капризна, и поведение ее непредсказуемо в целом ряде ситуаций. Отдаленно она напоминает о бушующем море, рисунок поверхности которого постоянно меняется, а глубинные течения и водовороты невидимы. Эта аналогия глубже, чем кажется на первый взгляд, ведь в воде есть и электрически заряженные частицы, ионы, причем иногда их концентрация велика. До некоторой степени вода тоже плазма.

Используя законы газовой динамики, как выяснено выше, из плазмы можно сформировать вращающийся тороид, причем вращение происходит по винтовой линии - то есть само тело тороида кажется неподвижным, но все частицы плазмы на его поверхности следуют по этой траектории. Внутри тороида - почти вакуум. Этот вакуум изолирован от объема ловушки стенками тороида. Они плазменные, эти стенки, но очень плотные, напоминают твердое тело. И вместе с тем частицы в них движутся.